12th|Maths|EX-5.3|Identify the types of Conic section

The General Equation of a Conic Section is given by: Ax²+Bxy+Cy²+Dx+Ey+F = 0.[br]Use the sliders to determine the relationship between A, B, and C that transforms one conic into another conic.[br]12th Standard | Mathematics | Exercise 5.3[br]Identify the type of conic section for each of the equations.[br]1,[math]2x^2-y^2=7[/math] 2.[math]3x^2+3y^2-4x+3y+10=0[/math] 3.[math]3x^2+2y^{^2}=14[/math] 4.[math]x^2+y^2+x-y=0[/math][br]5. [math]11x^2-25y^2-44x+50y-256=0[/math] 6.[math]y^2+4x+3y+4=0[/math][br][br]

Information: 12th|Maths|EX-5.3|Identify the types of Conic section