Do you know why the area of a parallelogram by 2 vectors [b][math]\overrightarrow{(a, b)}[/math] [/b] and [b][math]\overrightarrow{(c, d)} [/math] [/b] is the absolute value of [b] ad-bc[/b] ?[br]The value[b] ad-bc[/b] is called the determinant of the matrix [math] \begin{pmatrix} a \ c \\ b \ d\end{pmatrix}[/math][br]det [math] \begin{pmatrix} a \ c \\ b \ d\end{pmatrix}[/math] = [math] \begin{vmatrix} a \ c \\ b \ d\end{vmatrix}[/math] = ad-bc[br][br][i]Català:[br]Saps per què l'àrea del paral·lelogram de costats els vectors [b][math]\overrightarrow{(a, b)}[/math][/b] i [b][math]\overrightarrow{(c, d)} [/math][/b] és el valor absolut d' [b]ad-bc[/b] ?[br]El valor[b] ad-bc [/b]s'anomena determinant de la matriu [math] \begin{pmatrix} a \ c \\ b \ d\end{pmatrix}[/math][/i]
In this demonstration the vectors are the same quadrant.[br]You can make a similar construction where the vectors are in different quadrants?[br][br][i]Català:[br]En aquesta demostració els vectors estan al mateix quadrant.[br]Pots fer una construcció similar on els vectors estiguin en diferents quadrants ?[br][/i]