Introduction to Multiple Integration
[size=200][b][color=#ff7700]Multiple Integration[/color][/b][/size][br][br][justify]Through [b]multivariable calculus[/b] the concept of integration extends to functions having two or three variables with [b]double integrals[/b] and [b]triple integrals[/b] respectively. These integrals enable calculations to determine [i][color=#6d9eeb]areas[/color][/i] and [color=#6d9eeb][i]volumes[/i] [/color]and mass measurement as well as [i][color=#6d9eeb]center of mass[/color][/i] location and additional physical measurements for two-dimensional and three-dimensional regions.[br][br]A double integral serves as an extension of basic integration which applies to two-dimensional functions.[/justify][math]f\left(x,y\right)[/math]over a area [math]A[/math] or volume [math]V[/math] in space:
[justify]A triple integral serves as an extension of basic integration which applies to three-dimensional functions.[/justify][math]f\left(x,y,z\right)[/math] over a volume [math]V[/math] in space:
Triple Integral Formulas in Different Coordinate Systems
AR Tetrahedron
Tetrahedron
[img][/img][br][img][/img][br]where x is the edge length of the teterahedron.
[u][color=#0000ff]https://www.geogebra.org/classic/f8nsktju[/color][/u]
Introduction to Double Integration
Properties of Double Integrals
[size=100][size=150]Let [math]f[/math] and [math]g[/math] be continuos over a closed, bounded plane resgion, [math]R[/math], and let [math]c[/math][/size][/size] be a constant.[br][img][/img][br][img][/img][img][/img][br][img][/img][br][img][/img][br][img][/img][br][img][/img][br]where [math]R[/math] is the union of two non overlapping sub regions [math]R_1[/math] and [math]R_2[/math].
[size=200][b]Area of Region[br][/b][img][/img][size=85][size=100][size=150][br]where [math]dA[/math][/size][/size][/size][/size] is denoted as [math]dA=dxdy[/math] or [math]dA=dydx[/math].
[size=200][b]Volume of Region[br][img][/img][br][/b][size=150]where [math]dA[/math] is denoted as [math]dA=dxdy[/math] or [math]dA=dydx[/math].[/size][/size]
Double Integral Calculator
Take Note!!!
[img][/img][br][size=150]When you change the [b]function (pink)[/b], both upper and lower integral expressions update simultaneously to reflect the new integrand. However, the [b]integration limits must be adjusted manually[/b], they define the [b]region of integration[/b] and are [b]not auto-updated[/b]. These limits are visualized as boundary curves on the right-hand graph, and the shaded area shows the region enclosed by those limits.[/size]
[u][color=#0000ff]https://www.geogebra.org/classic/ygf7wecq[/color][/u]
Polar Q1
Type "Polar Q1" to find in app.[color=#0000ff][br]https://www.geogebra.org/calculator/pxnzztkh[/color]
Question 1
A piece of solid is cut out from sphere x[sup]2[/sup]+y[sup]2[/sup]+z[sup]2[/sup]9[math]\le9[/math] by the cylinder x[sup]2[/sup]+y[sup]2[/sup]=4 in the first octant. Using polar integral, find the volume of the cut-out solid.
Introduction of Triple Integration
We obtain volume of solid, G, by using triple intergrals in Cartesian Coordinate (x,y,z), as follow. [br] Volume, V = [math]\int\int\int[/math] dV =[math]\int\int\int[/math] dzdydx[br][br]Note that dz,dy,dx can be in any order
Type "Example 2.18" to see the graph in phone app[br][u][color=#0000ff]https://www.geogebra.org/3d/hkm6zzxm[/color][/u]
Example
Use triple integrals to find the volume of the solid which is bounded above by z=4-2x-y and below by region R in the xy-plane: [br][img][/img]
Triple Integral Spherical Visualizer
Type "Triple Polar 1" to find in phone app.[u][br][color=#0000ff]https://www.geogebra.org/m/qtasfdky[/color][/u]
Question 1
Type "Example 2.21 a" to see the graph in app[br][u][color=#0000ff]https://www.geogebra.org/3d/w2qrqjac[/color][/u]
Question 1
Find the volume of the solid bounded by planes z=1-x[sup]2[/sup] and y+x=1 in the first octant.[br][img][/img]
Quiz 2020
Double Integration
Given a solid bounded by planes [math]z=2[/math], [math]y=x^2[/math], [math]y=3[/math] and [math]x=0[/math]. Find the volume of the solid by using double integral.[br][img][/img]
[u][color=#0000ff]https://www.geogebra.org/classic/exybdkcm[/color][/u]