Circles on the Rim, 3: Iteration-ის ასლი

Iterating on the rim.[br][br]The straight line across the bottom, through B, is the projection of the bounding circle. [br][br]I could also reproject so that circles p and q are the same size; a problem which is already solved. But I would like slightly more than this. I want iteration rules, either in the original figure, or in a single projection space.
Ok. For more circles on the line, no problem. But what about....[br][br](more soon).[br][br][br]_________________[br]The Tangent Circle Problem:[br][list][br][*]1. Tangent along the rim: solve for k[br][*]2a. Initial position: [url]http://www.geogebratube.org/material/show/id/58360[/url] [br][*]2b. Tangent to equal circles: [url]http://www.geogebratube.org/material/show/id/58455[/url] [br][br][*]3a. Four mutually tangent & exterior circles (Apollonius): [url]http://www.geogebratube.org/material/show/id/58189 [/url][br][*]3b. Vector reduction: [url]http://www.geogebratube.org/material/show/id/58461[/url] [br][/list][br][list][br][*]Affine Transformation [url]http://www.geogebratube.org/material/show/id/58177[/url] [br][*]Reflection: Line about a Circle [url]http://www.geogebratube.org/material/show/id/58522[/url] [br][*]Reflection: Circle about a Circle: [url]http://www.geogebratube.org/material/show/id/58185[/url] [br][*]Circle Inversion: Metric Space: [url]http://www.geogebratube.org/material/show/id/60132[/url] [br][/list][br]Solution:[br][list][br] [*]Sequences 1: Formation [url]http://www.geogebratube.org/material/show/id/58896[/url] [br] [*]Sequence 1: Formation [url]http://www.geogebratube.org/material/show/id/59816[/url] [br] [*][b]→Sequence 1: Iteration 1[/b][br] [*]Example of equivalent projections: [url]http://www.geogebratube.org/material/show/id/65754[/url] [br] [*]Final Diagram: [url]http://www.geogebratube.org/material/show/id/65755[/url][br][/list]

Information: Circles on the Rim, 3: Iteration-ის ასლი