IM Alg2.2.8 Practice: End Behavior (Part 1)

[size=150]Which polynomial function gets larger and larger in the negative direction as [math]x[/math] gets larger and larger in the negative direction?[/size]
[size=150]The graph of a polynomial function [math]f[/math] is shown.[/size][br][img][/img][br]Which statement about the polynomial is true?
[size=150]Andre wants to make an open-top box by cutting out corners of a 22 inch by 28 inch piece of poster board and then folding up the sides. The volume [math]V(x)[/math] in cubic inches of the open-top box is a function of the side length  in inches of the square cutouts.[/size][br][br]Write an expression for [math]V(x)[/math].
What is the volume of the box when [math]x=6[/math]?[br]
What is a reasonable domain for [math]V[/math] in this context?[br]
For each polynomial function, rewrite the polynomial in standard form. Then state its degree and constant term.
[math]f(x)=(3x+1)(x+2)(x-3)[/math][br]
[math]g(x)=\text{-}2(3x+1)(x+2)(x-3)[/math]
Kiran wrote [math]f(x)=(x-3)(x-7)[/math] as an example of a function whose graph has [math]x[/math]-intercepts at [math]x=\text{-}3,\text{-}7[/math]. What was his mistake?
A polynomial function, [math]f(x)[/math], has [math]x[/math]-intercepts at [math](\text{-}6,0)[/math] and [math](2,0)[/math]. What is one possible factor of [math]f(x)[/math]?
Close

Information: IM Alg2.2.8 Practice: End Behavior (Part 1)