McCay cubic(K003)

[size=85]Here we have the same construction as in the previous two cubics. And by using GeoGebra we conclude that McCay cubic is isogonal transform of itself.[/size]
Barycentric equation
[math]\sum_{cyclic} a^2\left(b^2+c^2-a^2\right)x\left(c^2y^2-b^2z^2\right)=0[/math]
Proof
[size=85]Here we again substitude [math]x[/math], [math]y[/math] and [math]z[/math] with [math]a^2zy[/math], [math]b^2xz[/math] and [math]z^2xy[/math].[br][math]\sum_{cyclic}a^2\left(b^2+c^2-a^2\right) x\left(c^2y^2-b^2z^2\right)=0[/math][br][math]\sum_{cyclic}a^2\left(b^2+c^2-a^2\right)a^2zy\left(c^2{(c^2xz)}^2-b^2(z^2xy)^2\right)=0[/math][br][math]\sum_{cyclic}a^2\left(b^2+c^2-a^2\right)a^2zy\left(c^2b^4x^2z^2-b^2z^4x^2y^2\right)=0[/math][br][math]\sum_{cyclic}a^2\left(b^2+c^2-a^2\right)a^2zy\left(c^2b^4x^2z^2-b^2z^4x^2y^2\right)=0[/math][br][math]a^2b^2c^2xyz\sum_{cyclic}a^2\left(b^2+c^2-a^2\right)x\left(b^2z^2-c^2y^2\right)=0[/math][br][math]a^2b^2c^2xyz\sum_{cyclic}a^2\left(b^2+c^2-a^2\right)x\left[-(c^2y^2-b^2z^2\right)]=0[/math][br][math]-a^2b^2c^2xyz\sum_{cyclic}a^2\left(b^2+c^2-a^2\right)x\left(c^2y^2-b^2z^2\right)=0[/math][br]And again we have the same equation as that in the beginning. McCay cubic is isogonal transform of itself.[/size]

Information: McCay cubic(K003)