The purpose of this applet is to facilitate practice in finding partial fraction decomposition of a rational function, [math]\frac{f\left(x\right)}{g\left(x\right)}[/math], where degree of [math]f\left(x\right)[/math] is less than that of [math]g\left(x\right)[/math] . First, the denominator [math]g\left(x\right)[/math] is completely factored. For example, if [math]g\left(x\right)=\left(x-a\right)\left(x-b\right)\left(x-c\right)^2\left(x^2+u\right)\left(x^2+v\right)^2[/math] partial fraction decomposition of [math]\frac{f\left(x\right)}{g\left(x\right)}[/math]is of the form[br][math]\frac{f\left(x\right)}{g\left(x\right)}=\frac{A}{x-a}+\frac{B}{x-b}+\frac{C}{\left(x-c\right)}+\frac{D}{\left(x-c\right)^2}+\frac{Ex+F}{x^2+u}+\frac{Gx+H}{x^2+v}+\frac{Jx+K}{\left(x^2+v\right)^2}[/math][br]The above factorization of [math]g\left(x\right)[/math] is used to create a template of decomposition. The questions in this applet are much simpler.[br]Follow the instructions to use the applet.