IM 8.4.3 Practice: Balanced Moves

[size=150]In this hanger, the weight of the triangle is [math]x[/math] and the weight of the square is [math]y[/math].[/size][br][img][/img][br][br][size=150][size=100]Write an equation using [math]x[/math] and [math]y[/math] to represent the hanger.[/size][/size]
[size=150][size=100]If [math]x[/math] is 6, what is [math]y[/math]?[/size][/size]
[size=150]Andre and Diego were each trying to solve [math]2x+6=3x-8[/math]. Describe the first step they each make to the equation.[/size][br][br]The result of Andre’s first step was[size=100][size=150] [math]-x+6=-8[/math][/size][/size]
The result of Diego’s first step was [size=100][math]6=x-8[/math].[/size]
Fill in the table with values for x or y that make this equation true: 3x + y = 15.
Create a graph, plot these points, and draw a line that goes through them.​​​​
What is the slope of the line that goes through these points?
Match each set of equations with the move that turned the first equation into the second.
A:[br][math]6x+9=4x-3[/math][br][math]2x+9=-3[/math]
B:[br][math]-4(5x-7)=-18[/math][br][math]5x-7=4.5[/math]
C:[br][math]8-10x=7+5x[/math][br][math]4-10x=3+5x[/math]
D:[br][math]\frac{-5x}{4}=4[/math][br][math]5x=-16[/math]
E:[br][math]12x+4=20x+24[/math][br][math]3x+1=5x+6[/math]
[size=150]Select [b]all[/b] the situations for which only zero or positive solutions make sense.[/size]
Close

Information: IM 8.4.3 Practice: Balanced Moves