Notes: [list] [*][b]Tool:[/b] [url]http://www.geogebratube.org/material/show/id/84229[/url] [math]\;\;\;[/math]BezierPath1[number n, polyline, number m] [math]\;\;\;[/math]n = #points-1 [math]\;\;\;[/math]m = path parameter on the polyline. [*]High order curves are not easy to fit to a path. Here, the real path is the letter [b]β[/b]. The control points are not a good approximation of "β" except at the endpoints. [math]A_0, A_1 [/math] give a point on the figure, the direction and magnitude of the tangent vector at that point. A better solution is to use concatenated curves of low order. I will complete a small set of tools for curves of arbitrary order, and then modify them to give concatenated curves. [/list] onward! ________ Bézier Curves: 2. High Order Curves [list] [*] Standard Curve: [math] \;\;\;[/math]Coefficient Matrix[color=#1551b5](+TOOL)[/color]: [url]http://www.geogebratube.org/material/show/id/83830[/url] [math] \;\;\;[/math] Bézier Curve of Order n[color=#1551b5] (+TOOL)[/color]: [url]http://www.geogebratube.org/material/show/id/83844[/url] [/list] [list] [*][b]→Curve from Path: [/b] [math] \;\;\;[/math]Coefficient Matrix [color=#1551b5](+TOOL)[/color]: [url]http://www.geogebratube.org/material/show/id/84218[/url] [math] \;\;\;[/math]Bézier Path of Order n [color=#1551b5](+TOOL)[/color]: [url]http://www.geogebratube.org/material/show/id/84231[/url] [/list]