Unit: 1.2.2 : Synthetic Division

1. (a) What is the degree of quotient when the degree of polynomial is 'n' in [br]synthetic division?[br]Solution:[br]The degree of quotient is n-1.[br][br]1. (b) What should be the expression of division in synthetic division?[br]Solution:[br]In synthetic division the divisor must be linear and dividend must be in standard form.[br][br]2. Use synthetic division and divide in each of the following:[br](a) [math] x^3 + 8 [/math] by [math] x-2 [/math][br]Solution:[br]Let [math] f(x) = x^3 + 8 [/math] [br]Zero of [math] x-2 [/math] is 2.[br]Using synthetic division, we get,[br][img][/img][br]Here, quotient [math] (Q ) = x^2 + 2x + 4 [/math][br]Remainder [math] (R) = 8 [/math] [br][br]2. (b) [math] 2x^4+7x^3+x-12 [/math] by [math] (x+3) [/math][br]Solution:[br]Let, [math] f(x) = 2x^4+7x^3+0.x^2+x-12 [/math][br]Zero of [math] x+3 [/math] is [math] - 3 [/math][br]Now, using synthetic division, we get,[br][img][/img][br]Here, quotient [math] = 2x^3+x^2-3x+10 [/math][br]Remainder [math] = - 42 [/math] [br][br]2. (c) [math] 4x^3-3x^2+x+9 [/math] by [math] x-2 [/math][br]Solution:[br]Let, [math] f(x) = 4x^3-3x^2+x+9 [/math][br]Zero of polynomial [math] x- 2 [/math] is 2.[br]Now, using synthetic division, we get,[br][img][/img][br][math] \therefore [/math] Quotient [math] = 4x^2 + 5x + 11 [/math][br]Remainder [math] = 31 [/math][br][br]2. (d) [math] 2x^3+7x^2-8 [/math] by [math] (x+3) [/math][br]Solution:[br]Let, [math] f(x) = 2x^3+7x^2 + 0.x -8 [/math][br]Zero of [math] x+3 [/math] is -3.[br]Now, using synthetic division, we get,[br][img][/img][br]Here, Quotient [math] = 2 x^2+x - 3 [/math][br]Remainder [math] = 1 [/math][br][br]2. (e) [math] 8x^3+4x^2+6x-7 [/math] by [math] 2x-1 [/math] [br]Solution:[br]Let, [math] f(x) = 8x^3+4x^2+6x-7 [/math][br]Zero of polynomial [math] 2x - 1 [/math] is [math] \frac{1}{2} [/math][br]Now, using synthetic division, we get,[br][img][/img][br]Here,[br] [math] \begin{align} \text{Quotient} & = \frac{1}{2} (8x^2+8x+10 )\\ & = \frac{1}{2} \times 2 (4x^2 +4x + 5 ) \\ & = 4x^2+4x+5 \end{align} [/math] [br]Remainder [math] = -2 [/math]

Information: Unit: 1.2.2 : Synthetic Division