[table][br][tr][br][td]English[/td][br][td]Japanese[/td][br][td]Korean[/td][br][td]Chinese Simplified[/td][br][/tr][br][tr][br][td]Factorise/Factorize[/td][br][td]因数分解[/td][br][td]인수분해[/td][br][td]因式分解[/td][br][/tr][br][tr][br][td]Quadratic Equation[/td][br][td]二次方程式[/td][br][td]이차방정식[/td][br][td]二次方程[/td][br][/tr][br][tr][br][td]Roots[/td][br][td]根[/td][br][td]근[/td][br][td]根[/td][br][/tr][br][tr][br][td]X-axis Intersection[/td][br][td]X軸との交点[/td][br][td]x축과의 교점[/td][br][td]与x轴的交点[/td][br][/tr][br][tr][br][td]Graph Sketching[/td][br][td]グラフのスケッチ[/td][br][td]그래프 스케치[/td][br][td]绘图[/td][br][/tr][br][tr][br][td]Discriminant[/td][br][td]判別式[/td][br][td]판별식[/td][br][td]判别式[/td][br][/tr][br][tr][br][td]Leading Coefficient[/td][br][td]最高次係数[/td][br][td]선도계수[/td][br][td]首项系数[/td][br][/tr][br][tr][br][td]Orientation of Quadratic Graph[/td][br][td]二次関数のグラフの向き[/td][br][td]이차함수 그래프의 방향[/td][br][td]二次图形的方向[/td][br][/tr][br][tr][br][td]Completing the Square[/td][br][td]平方完成[/td][br][td]완전제곱식[/td][br][td]配方法[/td][br][/tr][br][tr][br][td]Quadratic Formula[/td][br][td]二次方程式の解の公式[/td][br][td]이차방정식의 해 공식[/td][br][td]二次方程的求根公式[/td][br][/tr][br][tr][br][td]Solution Regions[/td][br][td]解の領域[/td][br][td]해의 영역[/td][br][td]解的区域[/td][br][/tr][br][tr][br][td]Quadratic Inequalities[/td][br][td]二次不等式[/td][br][td]이차부등식[/td][br][td]二次不等式[/td][br][/tr][br][tr][br][td]Factored Form[/td][br][td]因数分解された形[/td][br][td]인수분해된 형태[/td][br][td]因式分解形式[/td][br][/tr][br][tr][br][td]Perfect Square[/td][br][td]完全平方[/td][br][td]완전제곱[/td][br][td]完全平方[/td][br][/tr][br][tr][br][td]Critical Values[/td][br][td]臨界値[/td][br][td]임계값[/td][br][td]临界值[/td][br][/tr][br][/table][br]
[table][br][tr][br][td][b]Factual Questions[/b][/td][br][td][b]Conceptual Questions[/b][/td][br][td][b]Debatable Questions[/b][/td][br][/tr][br][tr][br][td]1. How do you factorise a quadratic equation in the form [math]ax^2+bx+c[/math]?[/td][br][td]1. Explain the significance of the discriminant in solving quadratic equations.[/td][br][td]1. Is factoring always the most efficient method for solving quadratic equations? Why or why not?[/td][br][/tr][br][tr][br][td]2. What are the roots of the quadratic equation [math]ax^2+bx+c[/math]?[/td][br][td]2. Discuss how the sign of the leading coefficient affects the orientation of a quadratic graph.[/td][br][td]2. Debate the importance of learning to sketch quadratic graphs by hand in the age of graphing calculators.[/td][br][/tr][br][tr][br][td]3. How do you determine if a quadratic graph will touch or intersect the x-axis?[/td][br][td]3. How does factoring a quadratic equation help in sketching its graph?[/td][br][td]3. Can understanding inequalities and their graphical representations enhance problem-solving skills in real-life situations?[/td][br][/tr][br][tr][br][td]4. Sketch the graph of [math]y=ax^2+bx+c.[/math][/td][br][td]4. Compare and contrast the methods of solving quadratic equations: factoring, completing the square, and using the quadratic formula.[/td][br][td]4. Discuss the statement: "The ability to solve quadratic equations is more crucial than understanding their graphical implications."[/td][br][/tr][br][tr][br][td]5. What is the solution to the inequality[math]ax^2+bx+c>0[/math]?[/td][br][td]5. Explain the concept of "solution regions" in quadratic inequalities.[/td][br][td]5. Evaluate the role of quadratic equations and their applications in higher mathematics and other disciplines.[/td][br][/tr][br][/table][br]
Mini-Investigation: The Quest for Quadratic Mastery[br][br]Welcome, math adventurer, to the Quest for Quadratic Mastery! Today's challenge is to unlock the secrets of factoring quadratics. Prepare your algebraic skills, and let's crack these puzzles![br][br]Complete these quests, and you shall be crowned the Quadratic Master! Remember, each equation is a puzzle waiting to be solved. Enjoy the journey![br]
1. Simple Squares: Look at the quadratic equation [math]x^2-18x+81[/math] = 0. It seems to be a perfect square! How can you identify perfect squares? What does the graph of a perfect square parabola look like?
2. Significance of Signs: How does the sign of the solutions relate to the original equation?
3. Reverse Engineering: Imagine you're a mathematician who loves the number 3. Create a quadratic equation that has 3 and -3 as its solutions. What does your equation look like?
4. Creative Coefficients: Design your own factorable quadratic equation. Challenge a friend to factor it. Can they do it without using the quadratic formula?
5. Quadratic Challenge: Find a quadratic equation that is impossible to factor with whole numbers. What does the graph of such an equation look like?[br]
Factorise the quadratic equation [math]x^2-5x+6[/math].[br]
Factorise the quadratic equation [math]x^2+4x+4[/math].[br]
Factorise the quadratic equation [math]x^2-4[/math].
Factorise the quadratic equation [math]x^2-9[/math].[br]
Factorise the quadratic equation [math]x^2+x-6[/math].
Part 2 - Using factored form to sketch quadratics
We can also factored form to produce a number line for values of x for a which a quadratic is larger or less than 0. Experiment with point A and B to see how critical value (zeroes of the quadratic) can be used to find intervals for quadratic inequalities.