IM 8.8.4 Lesson: Square Roots on the Number Line

What do you notice? What do you wonder?
[img][/img]
Estimate the length of the line segment to the nearest tenth of a unit (each grid square is 1 square unit).
[img][/img]
Find the exact length of the segment.
[size=150]Diego said that he thinks that[math]\sqrt{3}\approx2.5[/math].[/size][br][br][img][/img][br]Use the square to explain why 2.5 is not a very good approximation for [math]\sqrt{3}[/math].
Find a point on the number line that is closer to √3.
Draw a new square on the axes and use it to explain how you know the point you plotted is a good approximation for [math]\sqrt{3}[/math].
Use the fact that [math]\sqrt{3}[/math] is a solution to the equation [math]x^2=3[/math]  to find a decimal approximation of [math]\sqrt{3}[/math] whose square is between 2.9 and 3.1.
[size=150]A farmer has a grassy patch of land enclosed by a fence in the shape of a square with a side length of 4 meters. To make it a suitable home for some animals, the farmer would like to carve out a smaller square to be filled with water, as in the figure.[/size][br][img][/img][br]What should the side length of the smaller square be so that half of the area is grass and half is water?

IM 8.8.4 Practice: Square Roots on the Number Line

Find the exact length of each line segment.
Estimate the length of each line segment to the nearest tenth of a unit. Explain your reasoning.
Consider using the grid to help. Plot each number on the x-axis: √16, √35, √66
[size=150]Use the fact that [math]\sqrt{7}[/math] is a solution to the equation [math]x^2=7[/math] to find a decimal approximation of [math]\sqrt{7}[/math] whose square is between 6.9 and 7.1.[/size]
Graphite is made up of layers of graphene.
Each layer of graphene is about 200 picometers, or [math]200\times10^{-12}[/math] meters, thick. How many layers of graphene are there in a 1.6-mm-thick piece of graphite? Express your answer in scientific notation.
Here is a scatter plot that shows the number of assists and points for a group of hockey players.
[size=150]The model, represented by [math]y=1.5x+1.2[/math], is graphed with the scatter plot. [/size][br][br][img][/img][br][br]What does the slope mean in this situation?
Based on the model, how many points will a player have if he has 30 assists?
[size=150]The points [math](12,23)[/math] and [math](14,45)[/math] lie on a line. What is the slope of the line?[/size]

Information