IM Geo.3.1 Practice: Scale Drawings

Polygon Q is a scaled copy of Polygon P.
[img][/img][br][br]The value of [math]x[/math] is 6, what is the value of [math]y[/math]?[br]
What is the scale factor?
Figure f ​is a scaled copy of Figure e.
[table][tr][td]We know:[br][list][*][math]AB=6[/math][br][/*][*][math]CD=3[/math][br][/*][*][math]XY=4[/math][br][/*][*][math]ZW=a[/math][br][/*][/list][/td][td][img][/img][/td][/tr][/table][br]Select [b]all [/b]true equations.
Solve each equation.
[math]\frac{2}{5}=\frac{x}{15}[/math]
[math]\frac{4}{3}=\frac{x}{7}[/math]
[math]\frac{7}{5}=\frac{28}{x}[/math]
[math]\frac{11}{4}=\frac{5}{x}[/math]
[size=150]Select the shape that has 180 degree rotational symmetry.[/size]
[size=150]Name a quadrilateral in which the diagonal is also a line of symmetry. Explain how you know the diagonal is a line of symmetry. [/size]
In isosceles triangle [math]DAC[/math], [math]AD[/math] is congruent to [math]AC[/math] and [math]AB[/math] is an angle bisector of angle [math]DAC[/math]. [br][img][/img][br]How does Kiran know that [math]AB[/math] is a perpendicular bisector of segment [math]CD[/math]?
In the figure shown, lines [math]f[/math] and [math]g[/math] are parallel. [br][img][/img][br][br]Select [b]all [/b]angles that are congruent to angle 1.
Cerrar

Información: IM Geo.3.1 Practice: Scale Drawings