黄金比例-花

Ben Sparks made the excellent Numberphile video (above) with a similar applet to the one below. I made a new version that lets the user change more parameters than Ben's applet does.
[br]L_{1}=序列((x-((offse)/(20))-i ((shift)/(10000)))^(2)+y^(2)=(((radius)/(100)))^(2),i,1,n)[br]L_{2}=序列(旋转(元素(L_{1},i),i r*2 π,A),i,1,n)[br]L_{3}=L_{2}[br][img][/img]
修改自:[url=https://www.geogebra.org/u/chiprollinson]Chip Rollinson[/url] 的 Golden Ratio - Flowers,https://www.geogebra.org/m/ApdBNNjN

Information: 黄金比例-花