How do the angle measures of triangle [math]XYZ[/math] compare to triangle [math]ABC[/math]? Explain how you know.
What are the side lengths of triangle [math]XYZ[/math]?
For triangle [math]XYZ[/math], calculate (long side) [math]\div[/math] (medium side), and compare to triangle [math]ABC[/math].
[img][/img][br] [br]Find the value of [math]\frac{d}{c}[/math].
What is the scale factor?