Cubic Bezier Curve Construction

This activity shows how to construct a cubic Bezier curve geometrically.[br][br]Points [i]E[/i], [i]F[/i] and [i]P[/i] are the midpoints of segments [i]e[/i], [i]f[/i] and [i]l[sub]1[/sub][/i], respectively.[br][br]Lines [i]s[/i], [i]l[/i], [i]k[/i], [i]t[/i], [i]g[/i], [i]h[/i], [i]p[/i], [i]q[/i] and [i]b[sub]1[/sub][/i] are parallel to segments [i]h[/i], [i]c[/i], [i]a[/i], [i]i[sub]1[/sub][/i], [i]f[/i], [i]e[/i], [i]m[/i], [i]n[/i] and [i]a[sub]1[/sub][/i], respectively.[br][br]Lines [i]j[/i] and [i]i[/i] are both parallel to segment [i]b[/i].[br][br]Move points [i]A[/i], [i]B[/i], [i]C[/i] and [i]D[/i] to change the shape of the quadrilateral.[br][br]Move point [i]G[/i] to trace the locus of point [i]Q[/i].

Information: Cubic Bezier Curve Construction