In this lesson you will be practicing graphing ordered pairs. There are three separate tasks that need to be complete during this lesson. [br][br]Task 1: Practicing Plotting Ordered Pairs[br]Task 2: Plotting Ordered Pairs[br]Task 3: Creating Ordered Pairs[br][br]Each task will have instructions to help you complete this lesson. If you have questions while working, please ask!
Please follow the instructions on the applet below. [br][br]Instead of emailing the picture, simply raise your hand when you have plotted 5 correct points. [b]If you do not show your teacher, you cannot get the points for this portion of the lesson.[/b]
Using the ordered pairs below, graph each of the points to create a picture. Connect the points in the order that they are listed using the line segment function. [br][br][img][/img][br]
Create a school appropriate image of your own design in the applet below. [br][br][b]Make sure your image includes at least 4 points in each quadrant of the coordinate plane.[/b]
Using the picture above, list out the ordered pairs you used to create your picture. [br][br]The idea is that someone else should be able to recreate your picture using the ordered pairs you list, just like in Task 1.
[table][tr][td]Point[/td][td]Ordered Pair[/td][/tr][tr][td]1[/td][td][/td][/tr][tr][td]2[/td][td][/td][/tr][tr][td]3[/td][td][/td][/tr][tr][td]4[/td][td][/td][/tr][tr][td]5[/td][td][/td][/tr][tr][td]6[/td][td][/td][/tr][tr][td]7[/td][td][/td][/tr][tr][td]8[/td][td][/td][/tr][tr][td]9[/td][td][br][/td][/tr][/table][table][tr][td]10 [/td][td] [/td][/tr][tr][td]11[/td][td][/td][/tr][tr][td]12[/td][td][/td][/tr][/table]