IM Geo.3.4 Practice: Dilating Lines and Angles

[size=150]Angle [math]ABC[/math] is taken by a dilation with center [math]P[/math] and scale factor 3 to angle [math]A'B'C'[/math]. [br]The measure of angle [math]ABC[/math] is [math]21°[/math]. What is the measure of angle [math]A'B'C'[/math]?[/size]
[img][/img][br][br]Select [b]all [/b]lines that could be the image of line [math]m[/math] by a dilation.
Dilate line [math]f[/math] with a scale factor of 2. The image is line [math]g[/math]. [br][img][/img][br][br]Which labeled point could be the center of this dilation?
Quadrilateral [math]A'B'C'E'[/math] is the image of quadrilateral [math]ABCE[/math] after a dilation centered at [math]F[/math]. What is the scale factor of this dilation?[br][img][/img][br]
A polygon has a perimeter of 18 units. It is dilated with a scale factor of [math]\frac{3}{2}[/math]. What is the perimeter of its image?
Solve the equation.
[math]\frac{4}{7}=\frac{10}{x}[/math]
Here are some measurements for triangle ABC and triangle XYZ:
[list][*]Angle [math]CAB[/math] and angle [math]ZXY[/math] are both 30 degrees[/*][*][math]AC[/math] and [math]XZ[/math] both measure 3 units[/*][*][math]CB[/math] and [math]ZY[/math] both measure 2 units[/*][/list]Andre thinks these triangles must be congruent. Clare says she knows they might not be congruent. Construct 2 triangles with the given measurements that aren't congruent. Explain why triangles with 3 congruent parts aren't necessarily congruent.
Schließen

Information: IM Geo.3.4 Practice: Dilating Lines and Angles