[color=#000000]The[/color][color=#ff0000] MIDSEGMENT OF A TRIANGLE [/color][color=#000000]is a[/color][color=#ff0000] segment that connects the midpoints of and 2 of the triangle's sides[/color][color=#000000]. [br][br][/color]In the applet below, be sure to change the locations of the triangle's vertices [i]before[/i] sliding the slider. Be sure to drag the slider several times. As you do, pay close attention to the phenomena you're observing. [br][br]After interacting with the applet below for a few minutes, please answer the questions that follow. [br][br][br][br]
[color=#000000][b]Questions: [/b][br][br]1) What [b]2 facts[/b] does this applet illustrate about the[/color][color=#ff0000] midsegment of any triangle[/color][br][color=#000000][b] [/b]with respect to the triangle's 3rd side? [/color][color=#ff0000] [/color][br] [color=#000000][br]2) Formally prove these 2 statements true using either the format of a 2-column proof,[br] coordinate geometry proof, or paragraph proof. [/color]
Created by [url=https://www.geogebra.org/u/tbrzezinski]Tim Brzezinski[/url][br]https://www.geogebra.org/m/NjQaYTCV#material/m55mTjXE