Translations as Composition of Reflections

Any translation can be expressed as the composition of two reflections. [br][br]In the sketch below, [math]\Delta[/math][color=#0000ff]A'B'C[/color]' is the result of translating [math]\Delta[/math][color=#ff0000]ABC[/color] by vector [b]v[/b].[br][br][math]\Delta[/math][color=#f1c232]A''B''C''[/color]is the result of reflecting [math]\Delta[/math][color=#ff0000]ABC[/color] over m then reflecting the image over n.[br][br]Play with the sketch ([b][color=#38761d]by moving the green points[/color][/b]), and decide how to arrange the [b]orange lines [/b]so thattriangle [math]\Delta[/math][color=#f1c232]A''B''C''[/color] coincides with [math]\Delta[/math][color=#0000ff]A'B'C[/color]'.[br][br]What is the relationship among [color=#ff7700]line m[/color], [color=#ff7700]line n[/color], and the [b]translation vector[/b]?

Information: Translations as Composition of Reflections