Using the applet above[br] a) Move F so that it has position Vector (2,1). [br] b) Move D so that it has position vector (-4,3). [br] c) Place the ends of the blue vector so that it become vector FD.[br] Take Printscreen[br] d) State the components of FD.[br] e) State FD in terms of vectors f and d.
Using the applet above [br][br][math]u_1=u[/math] and [math]v_1=v[/math], move [math]u_1[/math] and [math]v_1[/math] about to help you visualise and answer the questions below.[br][br]In terms of [math]u[/math] and [math]v[/math] state[br][br]a) AB[br]b) BC[br]c) AD[br]d) CD[br]e) AC[br]f) DB[br][br]No print screen is needed, just the answers to each item
Using the applet above [br] 1) List the coordinates of Points A,B,C,D,E,F,G,H,I. Notice that point A and O are the same.[br] 2) State: [br] a) the components of [math]\vec{OH}=\vec{AH}=\vec{h}[/math][br] b) the components of [math]\vec{AC}[/math][br] c) the vector [math]\vec{BG}[/math] in terms of vectors [math]\vec{OB}[/math] and [math]\vec{OG}[/math].[br] d) the components of [math]\vec{EI}[/math][br] e) the vector [math]\vec{IE}[/math] in terms of [math]\vec{EI}[/math][br] f) the components of [math]\vec{JK}[/math]