IM Alg1.7.15 Lesson: Quadratic Equations with Irrational Solutions

Here are some squares whose vertices are on a grid.
Find the area and the side length each square.
[size=150]Solve each equation. Use the [math]\pm[/math] notation when appropriate.[/size][br][br][math]x^2-13=-12[/math]
[math]\left(x-6\right)^2=0[/math]
[math]x^2+9=0[/math]
[math]x^2=18[/math]
[math]x^2+1=18[/math]
[math]\left(x+1\right)^2=18[/math]
Here is an example of an equation being solved by graphing and by completing the square.
[size=150][table][tr][td][img][/img][/td][td][math]\displaystyle \begin {align} x^2 + 6x +7 &=0\\ x^2 + 6x + 9 &= 2\\(x+3)^2 &= 2\\x+3 &=\pm \sqrt2\\ x &=\text-3\pm \sqrt2 \end{align}[/math][br][br]Verify: [math]\sqrt{2}[/math] is approximately 1.414. [br]So [math]\text{-}3+\sqrt{2}\approx\text{-}1.586[/math] and [math]\text{-}3-\sqrt{2}\approx\text{-}4.414[/math].[/td][/tr][/table][br]For each equation, find the exact solutions by completing the square and the approximate solutions by graphing. Then, verify that the solutions found using the two methods are close. If you get stuck, study the example.[/size][br][br][math]x^2+4x+1=0[/math]
[math]x^2-10x+18=0[/math]
[math]x^2+5x+\frac{1}{4}=0[/math]
[math]x^2+\frac{8}{3}x+\frac{14}{9}=0[/math]
Write a quadratic equation of the form [math]ax^2+bx+c=0[/math] whose solutions are [math]x=5-\sqrt{2}[/math] and [math]x=5+\sqrt{2}[/math].
Close

Information: IM Alg1.7.15 Lesson: Quadratic Equations with Irrational Solutions