– Wähle im Menü “Geraden und Strecken” das Werkzeug “Mittelsenkrechte” aus. Klicke dann[br]einmal auf jede Dreiecksseite.[br]– Wähle im Menü “Punkte” das Werkzeug “Punkt” aus und klicke auf den gemeinsamen[br]Schnittpunkt aller Mittelsenkrechten.[br]–Wähle im Menü “Kreise” das Werkzeug “Kreis mit Mittelpunkt durch Punkt” aus. Klicke[br]einmal auf den Schnittpunkt der Mittelsenkrechten, ziehe dann die Maus (ohne Klick) zu einem[br]beliebigen Eckpunkt des Dreiecks und klicke noch einmal.
Wähle im Menü “Maus” das Werkzeug “Bewege” aus. Untersuche die Lage des Umkreismittelpunktes, indem du mit dem Mauszeiger die Eckpunkte des Dreiecks verschiebst. Schaffst du es, den Umkreismittelpunkt (a) außerhalb des Dreiecks und (b) genau auf einer Dreiecksseite zu platzieren? Beschreibe, wie das Dreieck aussieht, wenn der Umkreismittelpunkt außerhalb des Dreiecks liegt.
– Wähle im Menü “Geraden und Strecken” das Werkzeug “Winkelhalbierende” aus. Klicke[br]dann auf die Eckpunkte des Dreiecks, einmal in der Reihenfolge ABC, dann BCA und zuletzt[br]CAB.[br]– Wähle im Menü “Punkte” das Werkzeug “Punkt” aus und klicke auf den gemeinsamen[br]Schnittpunkt aller Winkelhalbierenden.[br]– Wähle im Menü “Geraden und Strecken” das Werkzeug “Senkrechte Gerade” aus und klicke[br]einmal auf den Schnittpunkt der Winkelhalbierenden und einmal auf eine beliebige[br]Dreiecksseite.[br]– Wähle im Menü “Kreise” das Werkzeug “Kreis mit Mittelpunkt durch Punkt” aus. Klicke[br]einmal auf den Schnittpunkt der Winkelhalbierenden, ziehe dann die Maus (ohne Klick) zum[br]Schnittpunkt der im vorherigen Schritt gezeichneten senkrechten Geraden mit der Dreiecksseite[br]und klicke noch einmal.
Wähle im Menü “Maus” das Werkzeug “Bewege” aus. Untersuche die Lage des Inkreismittelpunktes, indem du mit dem Mauszeiger die Eckpunkte des Dreiecks verschiebst. Begründe, warum ein Inkreismittelpunkt niemals außerhalb des Dreiecks liegen kann.