[math]9^{\frac{1}{2}}[/math]
[math]9^{-\frac{1}{2}}[/math]
Use your graph of [math]y=2^x[/math] to estimate the value of the other powers in the table, and write your estimates in the table.[br]
[size=150]Let’s investigate [math]2^{\text{-}\frac{1}{3}}[/math].[/size][br][br]Write [math]2^{\text{-}\frac{1}{3}}[/math] using radical notation.
What is the value of [math](2^{\text{-}\frac{1}{3}})^3[/math]?[br]
Raise your estimate of [math]2^{\text{-}\frac{1}{3}}[/math] to the third power. What should it be? [br]
[size=150]Let’s investigate [math]2^{\text{-}\frac{2}{3}}[/math].[br][/size][br]Write [math]2^{\text{-}\frac{2}{3}}[/math] using radical notation.
What is [math](2^{\text{-}\frac{2}{3}})^3[/math]?[br]
Raise your estimate of [math]2^{-\frac{2}{3}}[/math] to the third power. What should it be? [br]
[math]17^{\frac{3}{2}}[/math]
[math]31^{\frac{3}{2}}[/math]
[math](\sqrt{3})^4[/math]
[math]\frac{1}{(\sqrt[3]{5})^6}[/math]
Write two different expressions that involve only roots and powers of 2 which are equivalent to [math]\frac{4^{\frac{2}{3}}}{8^{\frac{1}{4}}}[/math].