I learnt about this sequence from the Numberphile video:
So I tried to plot it in GeoGebra using the definition provided here: [br][br][url=https://oeis.org/A133058]https://oeis.org/A133058[/url][br][br]However, it seems that it is very hard for GeoGebra (classic 5) to handle more than 700 points from the sequence.[br][br]Anyway, try the following GeoGebra script in your desktop.
[code]#A[0]:= 1: A[1]:= 1:[br]#for n from 2 to 1200 do[br]#g:= igcd(A[n-1], n);[br]#A[n]:= A[n-1]/g + If(g=1, n+1, 0);[br][br]n = 700[br][br]Execute(Join({"A0 = 1", "A1 = 1"}, Sequence("A"+i+" = A"+(i-1)+"/GCD(A"+(i-1)+", "+(i)+")+If(GCD(A"+(i-1)+", "+(i)+")==1, "+i+"+1, 0)", i, 2, n)))[br][br]L_1 = CellRange(A1, A700)[br][br]L_2 = Sequence((k, Element(L_1, k)), k, 1, Length(L_1))[br][br][/code]
Thanks to [url=https://www.geogebra.org/u/roman]Roman Chijner[/url]'s suggestion there is a more efficient way to calculate the terms of the sequence for n>700.
[code]n=1200[br][br]A0 = 1[br][br]A1 = 1[br][br]Execute(Sequence("A"+i+" = CopyFreeObject(A"+(i-1)+"/GCD(A"+(i-1)+", "+(i)+")+If(GCD(A"+(i-1)+", "+(i)+")==1, "+i+"+1, 0))", i, 2, n))[br][br]L_1 = CellRange(A1, A1200)[br][br]L_2 = Sequence((k, Element(L_1, k)), k, 1, Length(L_1))[br][br][/code]