Lesson 1-1: H.O.T. Problem #58

[size=150]What is the greatest number of planes determined using any three points [i]A, B, C, [/i]and [i]D,[/i] if no three points are collinear?[/size] Use the Geogebra Applet below to find out!
Instructions
[table][tr][td]1.[/td][td][icon]/images/ggb/toolbar/mode_planethreepoint.png[/icon][/td][td]Click on the [i]Plane through 3 Points[/i] icon in the Toolbar and select 3 points on the screen to define your first plane.[/td][/tr][tr][td]2.[/td][td][/td][td]Repeat Step 1 until you have created as many planes as you think are possible.[/td][/tr][tr][td]3.[/td][td][icon]/images/ggb/toolbar/mode_move.png[/icon][/td][td]Activate the [i]Move[/i] Tool and select one of the planes.[/td][/tr][tr][td]4.[/td][td][img]https://wiki.geogebra.org/uploads/thumb/d/db/Stylingbar_icon_graphics.svg/32px-Stylingbar_icon_graphics.svg.png[/img][/td][td]Open the [i]Style Bar[/i] using the [i]Style Bar[/i] button the in right upper corner.[/td][/tr][/table][table][tr][td]5.[/td][td] [/td][td]Change the color of the plane.[/td][/tr][/table][table][tr][td]6.[/td][td] [/td][td]Repeat Steps 3-5 until each of the planes is a different color.[/td][/tr][/table]    
How many different planes were you able to create using only points [i]A, B, C [/i]and [i]D[/i]?
Close

Information: Lesson 1-1: H.O.T. Problem #58