Special Spheroid Action: Locus Illustration

[color=#000000]The following applet illustrates a[/color] [color=#1e84cc][b]spheroid (ellipsoid of revolution)[/b][/color] [color=#000000]with equation [/color][math]\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{b^2}=1[/math][color=#000000], for the case where [/color][math]a\ge b[/math][color=#000000]. [br][br]The white points are foci, the [/color][color=#ff7700][b]orange points are vertices[/b][/color][color=#000000], and the [/color][color=#bf9000][b]yellow point is any point[/b][/color][color=#000000] on this [/color][color=#1e84cc][b]ellipsoid of revolution. [/b][/color][color=#bf9000][b](Feel free to drag this yellow point anywhere you'd like!) [/b][/color][br][br][color=#000000]How does the action you see here compare with the action seen [url=https://www.geogebra.org/m/hy5zj7Dx]here[/url]? [br][br][/color][b][color=#1e84cc]To explore this resource in Augmented Reality, see the directions below the Milano cookies (at the bottom of this page). [/color][/b]
[color=#000000]And just for the fun of it.....[br]Doesn't this ellipsoid of revolution (below to the left) look a lot like Pepperidge Farm's Milano cookie (right)? [/color]
TO EXPLORE IN AUGMENTED REALITY:
1) Open up GeoGebra 3D app on your device. [br][br]2) Click on the 3 horizontal bars (upper left). Select OPEN. [br][br]3) Type in the code [b]hVtDzf4D[/b]. (It IS case sensitive). [br] Note this string of characters = the last 8 digits of the URL for this resource. [br][br] 4) The [b]Animate[/b] slider does the animation. [br] The [b]MajorAxis [/b]and [b]MinorAxis sliders [/b]alter the spheroid itself (obviously). [br] The [b][color=#999999]Filling[/color][/b] slider alters the opacity of the spheroid itself.

Information: Special Spheroid Action: Locus Illustration