Escargot des entiers

Il y a une infinité d'entiers. Il y a aussi une infinité de points à coordonnées entières relatives. A priori il y en a plus. Mais sait-on jamais avec les infinis? Cet escargot d'entiers explicite une bijection qui énumère tous ces points. Saurez-vous construire cette bijection?[br][math]p:\mathbb{N}\rightarrow\mathbb{Z}\times\mathbb{Z}[/math].
Vous pouvez modifier la longueur u de la liste affichée. Quel est le sens du coloriage?

Information: Escargot des entiers