×
Save
Cancel
Delete
Reflections
Reflection of triangle ABC over Line DE.
Construct segments AA', BB', and CC'. What is the relationship between those segments and line DE?
Font size
Font size
Very small
Small
Normal
Big
Very big
Bold
[ctrl+b]
Italic
[ctrl+i]
Underline
[ctrl+u]
Strike
Superscript
Subscript
Font color
Auto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Link
[ctrl+shift+2]
Quote
[ctrl+shift+3]
[code]
Code
[ctrl+shift+4]
Insert table
Remove Format
Insert image
[ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
Line DE is a perpendicular bisector of AA', BB', and CC'.
Is a reflection considered to be a rigid transformation?
Font size
Font size
Very small
Small
Normal
Big
Very big
Bold
[ctrl+b]
Italic
[ctrl+i]
Underline
[ctrl+u]
Strike
Superscript
Subscript
Font color
Auto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Link
[ctrl+shift+2]
Quote
[ctrl+shift+3]
[code]
Code
[ctrl+shift+4]
Insert table
Remove Format
Insert image
[ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
Yes, all measurements are preserved.
If a point is reflected across the y-axis, how does the ordered pair change?
Font size
Font size
Very small
Small
Normal
Big
Very big
Bold
[ctrl+b]
Italic
[ctrl+i]
Underline
[ctrl+u]
Strike
Superscript
Subscript
Font color
Auto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Link
[ctrl+shift+2]
Quote
[ctrl+shift+3]
[code]
Code
[ctrl+shift+4]
Insert table
Remove Format
Insert image
[ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
The x-coordinate becomes the opposite of what it was and the y-coordinate stays the same.
If a point is reflected across the x-axis, how does the ordered pair change?
Font size
Font size
Very small
Small
Normal
Big
Very big
Bold
[ctrl+b]
Italic
[ctrl+i]
Underline
[ctrl+u]
Strike
Superscript
Subscript
Font color
Auto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Link
[ctrl+shift+2]
Quote
[ctrl+shift+3]
[code]
Code
[ctrl+shift+4]
Insert table
Remove Format
Insert image
[ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
The x-coordinate stays the same and the y-coordinate becomes the opposite of what it was.
If a point is reflected across the line y=x, how does the ordered pair change?
Font size
Font size
Very small
Small
Normal
Big
Very big
Bold
[ctrl+b]
Italic
[ctrl+i]
Underline
[ctrl+u]
Strike
Superscript
Subscript
Font color
Auto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Link
[ctrl+shift+2]
Quote
[ctrl+shift+3]
[code]
Code
[ctrl+shift+4]
Insert table
Remove Format
Insert image
[ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
The x and y coordinates switch.
What is the definition of a line of symmetry?
Font size
Font size
Very small
Small
Normal
Big
Very big
Bold
[ctrl+b]
Italic
[ctrl+i]
Underline
[ctrl+u]
Strike
Superscript
Subscript
Font color
Auto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Link
[ctrl+shift+2]
Quote
[ctrl+shift+3]
[code]
Code
[ctrl+shift+4]
Insert table
Remove Format
Insert image
[ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
It basically means the line of symmetry cuts the figure in half. The two halves will map onto each other by a reflection in the line of symmetry.
glide reflection
Reflect triangle ABC over the lines x=1 and y=-2.
Close
Check
Try again
Information: Reflections