IM Geo.2.2 Lesson: Congruent Parts, Part 2

Each pair of figures is congruent. Decide whether each congruence statement is true or false.
[img][/img][br]Triangle [math]ABC[/math] is congruent to triangle [math]FED[/math].[br]
[img][/img][br]Quadrilateral [math]PZJM[/math] is congruent to quadrilateral [math]LYXB[/math].
[img][/img][br]Triangle [math]JKL[/math] is congruent to triangle [math]QRS[/math].
[img][/img][br]Pentagon [math]ABCDE[/math] is congruent to pentagon [math]PQRST[/math].
Here are three triangles.
Triangle [math]PQR[/math] is congruent to which triangle? Explain your reasoning.[br]
Show a sequence of rigid transformations that takes PQR to that triangle. Draw each step of the transformation.
Explain why there can’t be a rigid transformation to the other triangle.[br]
Triangle ABC is a rotation of triangle CDB around point E by 180˚.
Is angle [math]ADB[/math] congruent to angle [math]CDB[/math]? If so, explain your reasoning.
 If not, which angle is [math]ADB[/math] congruent to?
Polygon HIJKL is a reflection and translation of polygon GFONM.
Is segment [math]KJ[/math] congruent to segment [math]NM[/math]? If so, explain your reasoning.
 If not, which segment is [math]NM[/math] congruent to?
Quadrilateral PQRS is a rotation of polygon VZYW.
Is angle[math]QRS[/math] congruent to angle [math]ZYW[/math]? If so, explain your reasoning.
If not, which angle is [math]QRS[/math] congruent to?
Suppose quadrilateral PQRS was both a rotation of quadrilateral VZYW and also a reflection of quadrilateral .
What can we conclude about the shape of our quadrilaterals? Explain why.
Fermer

Information: IM Geo.2.2 Lesson: Congruent Parts, Part 2