[size=200][b][color=#ff0000][u]AAA (Angle-Angle Angle) Criteria[br][/u][/color][/b][/size][b][color=#ff0000][u][size=200][/size][br][/u][/color][/b]
[b][color=#0000ff]1) Is it possible to two different triangles that have the same angles but different sides?[/color][/b]
[b][color=#0000ff]2) Can the AAA Criteria be used to prove congruent triangles? [/color][/b]
[size=200][b][color=#ff0000][u]SSS (Side-Side-Side) Criteria[br][/u][/color][/b][/size][b][color=#ff0000][u][br][/u][/color][/b]
[b][color=#0000ff]3) What transformations are used to map one triangle to another triangle in the above activity?[/color][/b]
[b][color=#0000ff]4) Therefore, two triangles with the same sides will always be congruent. [/color][/b]
[size=200][b][color=#ff0000][u]SAS (Side-Angle-Side) Criteria[br][/u][/color][/b][/size][b][color=#ff0000][u][br][/u][/color][/b]
[b][color=#0000ff]5) What transformations are observed in the above activity ?[/color][/b]
[b][color=#0000ff]6) Therefore, two triangles with the same 2 sides and same included angle (SAS) will always be congruent. [/color][/b]
[size=200][b][color=#ff0000][u]SSA (Side-Side-Angle) Criteria[br][/u][/color][/b][/size][b][color=#ff0000][u][br][/u][/color][/b]
[b][color=#0000ff]7) If two triangles have the same SSA conditions, then one triangle [u]CAN ALWAYS[/u] be mapped onto the other using rigid motions only. [/color][/b]
[size=200][b][color=#ff0000][u]ASA (Angle-Side-Angle) Criteria[br][/u][/color][/b][/size][b][color=#ff0000][u][br][/u][/color][/b]
[b][color=#0000ff]7) If 2 angles and the included side of one triangle are fixed, which of these is TRUE? [/color][/b]
[size=200][b][u][color=#ff0000]AAS (Angle-Angle-Side) Criteria;[br][/color][/u][/b][/size][b][u][size=200][color=#ff0000][br][/color][/size][/u][/b]
[b][color=#0000ff]8) Therefore, are the triangles above congruent?[/color][/b]
[b][color=#0000ff]9) If 2 angles of a triangle are congruent to 2 angles of another triangle, what can we conclude about the third pair of angles? [/color][/b]
[b][color=#0000ff]10) Therefore, the [/color][color=#ff0000][i]Angle-Angle-Side[/i][/color][color=#0000ff] Triangle Congruence Theorem should be no surprise to us. Which other triangle congruence theorem is disguised here? [br][/color][/b][b][color=#0000ff][br][/color][/b]
[b][color=#ff0000][u][size=200]HL(Hypotenuse-Leg) Criteria[/size][/u][/color][/b]
[b][color=#0000ff]11) Therefore, are the triangles above congruent?[/color][/b]
[size=200][b][u][color=#ff0000]REFLECT & SUMMARIZE[/color][/u][/b][/size]
[color=#0000ff][b]12) What have you learned in this, and yesterday's lesson regarding triangle congruence criteria[/b]. ([/color][i]State at least two ideas)[/i]