[size=100]If you are not familiar with the construction steps necessary for the construction of the circumcircle of a triangle, you might want to explore the applet below. Just use the buttons of the [i]Navigation[/i][i] Bar[/i] in order to replay the construction steps. [/size]
[size=100]Construct the circumcircle of a triangle that passes the [i]Drag Test[/i] by following the construction steps provided below.[/size]
[table] [tr] [td][size=100]1.[/size][/td] [td][size=100][icon]/images/ggb/toolbar/mode_polygon.png[/icon][/size][/td] [td][size=100]Create an arbitrary triangle [i]ABC[/i].[/size][/td][/tr] [tr] [td][size=100]2.[/size][/td] [td][size=100][icon]/images/ggb/toolbar/mode_linebisector.png[/icon][/size][/td] [td][size=100]Construct the [i]Perpendicular Bisector[/i] for each side of the triangle.[br][u]Hint:[/u] The tool [i]Perpendicular Bisector[/i] can be applied to an existing segment.[/size][/td][/tr] [tr] [td][size=100]3.[/size][/td] [td][size=100][icon]/images/ggb/toolbar/mode_intersect.png[/icon][/size][/td] [td][size=100]Create intersection point [i]D[/i] of two of the line bisectors.[br][u]Hint:[/u] The tool [i]Intersect[/i] can be applied to the intersection of three lines or by successively selecting two of the three line bisectors.[/size][/td][/tr] [tr] [td][size=100]4.[/size][/td] [td][size=100][icon]/images/ggb/toolbar/mode_circle2.png[/icon][/size][/td] [td][size=100]Construct a circle with center [i]D[/i] through one of the vertices of triangle [i]ABC[/i].[/size][/td][/tr] [tr] [td][size=100]5.[/size][/td] [td][size=100][icon]/images/ggb/toolbar/mode_move.png[/icon][/size][/td] [td][size=100]Perform the Drag Test to check if your construction is correct.[/size][/td][/tr][/table]
Can the circumcenter of a triangle lie outside the triangle? If yes, for which types of triangles is this true?
Try to find an explanation for using line bisectors in order to create the circumcenter of a triangle.[br]