IM Alg1.7.5 Practice: How Many Solutions?

Rewrite each equation so that the expression on one side could be graphed and the x-intercepts of the graph would show the solutions to the equation.
[math]3x^2=81[/math]
[math]\left(x-1\right)\left(x+1\right)-9=5x[/math]
[math]x^2-9x+10=32[/math]
[math]6x(x-8)=29[/math]
[size=150]Here are equations that define quadratic functions [math]f[/math], [math]g[/math], and [math]h[/math].[/size] [br][br][table][tr][td][math]f\left(x\right)=x^2+4[/math][/td][td][math]g\left(x\right)=x\left(x+3\right)[/math][/td][td][math]h\left(x\right)=\left(x-1\right)^2[/math][/td][/tr][/table][br]Sketch a graph, by hand or using technology, that represents each equation.[br]
Determine how many solutions each [math]f\left(x\right)=0[/math], [math]g\left(x\right)=0[/math], and [math]h\left(x\right)=0[/math] has. Explain how you know.[br]
[size=150]Mai is solving the equation [math]\left(x-5\right)^2=0[/math]. She writes that the solutions are [math]x=5[/math] and [math]x=-5[/math]. Han looks at her work and disagrees. He says that only [math]x=5[/math] is a solution.[/size][br][br]Who do you agree with? Explain your reasoning.
[size=150]The graph shows the number of square meters, [math]A[/math], covered by algae in a lake [math]w[/math] weeks after it was first measured.[/size][br][br][size=150][img][/img][br][br]In a second lake, the number of square meters, [math]B[/math], covered by algae is defined by the equation [math]B=975\cdot\left(\frac{2}{5}\right)^w[/math], where [math]w[/math] is the number of weeks since it was first measured.[/size][br][br]For which algae population is the area decreasing more rapidly? Explain how you know.
[size=150]If the equation [math]\left(x-4\right)\left(x+6\right)=0[/math] is true, which is also true according to the zero product property?[/size]
[size=150]Solve the equation [math]25=4z^2[/math].[br][/size]
Show that your solution or solutions are correct.
To solve the quadratic equation [math]3\left(x-4\right)^2=27[/math], Andre and Clare wrote the following:[br][br][table][tr][td]Andre[/td][td]Clare[/td][/tr][tr][td][math]\begin {align} 3(x-4)^2 &= 27 \\ (x-4)^2 &= 9 \\ x^2 - 4^2 &= 9 \\ x^2 - 16 &= 9 \\ x^2 &= 25 \\ x = 5 \quad &\text{ or }\quad x = \text- 5\\ \end {align}[/math][/td][td][math]\begin{align} 3(x-4)^2 &= 27\\ (x-4)^2 &= 9\\ x-4 &= 3\\ x &= 7\\ \end{align}[/math][br][/td][/tr][/table][br]Identify the mistake each student made.[br]
Solve the equation and show your reasoning.
Decide if each equation has 0, 1, or 2 solutions and explain how you know.
[math]x^2-144=0[/math]
[math]x^2+144=0[/math]
[math]x\left(x-5\right)=0[/math]
[math]\left(x-8\right)^2=0[/math]
[math]\left(x+3\right)\left(x+7\right)=0[/math]
Close

Information: IM Alg1.7.5 Practice: How Many Solutions?