[math](2\sqrt{3})^2[/math]
[math](\frac{1}{2}\sqrt{3})^2[/math]
[math](2\sqrt{\text{-}1})^2[/math]
[math](\frac{1}{2}\sqrt{\text{-}1})^2[/math]
[list][*][math]a^2=16[/math][br][/*][*][math]b^2=\text{-}9[/math][/*][*][math]c^2=\text{-}5[/math][/*][/list]
[size=150]Write these imaginary numbers using the number [math]i[/math].[/size][br][math]\sqrt{\text{-}36}[/math]
[math]\sqrt{\text{-}10}[/math]
[math]\text{-}\sqrt{\text{-}100}[/math]
[math]\text{-}\sqrt{\text{-}17}[/math]
[size=150]When we add a real number and an imaginary number, we get a [b]complex number[/b]. [/size][br]The diagram shows where [math]2+i[/math] is in the complex number plane. What complex number is represented by point [math]A[/math]?
[list][*][math]-2-i[/math][/*][*][math]-6+3i[/math][/*][*][math]5+4i[/math][/*][*][math]1-3i[/math][/*][/list]
Diego says that all real numbers and all imaginary numbers are complex numbers but not all complex numbers are imaginary or real. Do you agree with Diego? Explain your reasoning.