La rotation pour découvrir l'aire du triangle

Les transformations géométriques aident à visualiser certains résultats. Dans le triangle ABC, b est la mesure de l'une des bases et h est la mesure de la hauteur relative à cette base. Déplace le curseur afin d'appliquer la rotation au triangle ABC.
A) Ensemble, le triangle ABC et son image par rotation forment une nouvelle figure. Comment s'appelle cette figure?
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font color
Auto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
B) Quelle est la formule d'aire de cette nouvelle figure?
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font color
Auto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
C) D'après les informations trouvée, quelle pourrait-être la formule de l'aire d'un triangle?
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font color
Auto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
Close

Information: La rotation pour découvrir l'aire du triangle