[color=#000000]Στην παρακάτω εφαρμογή βλέπετε ένα τετράπλευρο και μπορείτε να μετακινήσετε τις κορυφές του όπου εσείς θέλετε. [br][/color]Παίξε με την εφαρμογή μερικά λεπτά και μετά απάντησε τις ερωτήσεις που ακολουθούν. 
    
        
     
    
    
            [color=#980000][b]Questions:[/b][/color][color=#000000][br][br]1) How do you know the [b]smaller white points[/b] are [b]midpoints[/b]?  Explain.  [br][br]2) Notice how the [b]midpoints of the sides[/b] of this quadrilateral form [b]vertices[/b] of yet [b]another quadrilateral[/b].  [br]    How would you classify this [/color][color=#1e84cc][b]quadrilateral[/b][/color][color=#000000]?  That is, what would be the [/color][color=#1e84cc][b]most specific name[/b][/color][color=#000000] you'd give   [br]    this [/color][color=#1e84cc][b]quadrilateral[/b][/color][color=#000000]? [br][br]3) What observation(s), in the applet above, prompted you to give the [/color][color=#1e84cc][b]classification[/b][/color][color=#000000] you did for (2)?[br]    Explain fully why/how this applet informally suggests that your [/color][color=#1e84cc][b]answer to (2)[/b][/color][color=#000000] is correct.    [br][br]4) Formally prove that the [b]midpoints of the sides[/b] of [i]any quadrilateral [/i]always form [b]vertices[/b][br]    of this type of [/color][color=#1e84cc][b]specific quadrilateral[/b][/color][color=#000000].  Prove this using the format of a 2-column or paragraph proof.  [br]   (If you need a hint getting started, refer to [url=https://www.geogebra.org/m/NFCwzehu]this worksheet[/url].)  [br][br]5) Use coordinate geometry to formally prove your response to (2) is true.  [br]    (Hint: Place one vertex of this quadrilateral at (0,0).  Place another vertex at (2a, 0).)  [/color]