[list][*]Differentiation produces the [b]derivative[/b] of a function, denoted either [math]\frac{dy}{dx}[/math] or [math]f'\left(x\right)[/math][br][/*][*] [math]y=x^n\Rightarrow\frac{dy}{dx}=nx^{n-1}[/math] (eg. [math]y=x^7\Rightarrow\frac{dy}{dx}=7x^6[/math])[br][/*][*] [math]y=ax^n\Rightarrow\frac{dy}{dx}=anx^{n-1}[/math] (eg. [math]y=5x^7\Rightarrow\frac{dy}{dx}=35x^6[/math])[br][/*][*]If the function comprises many terms, differentiate each individually[br]- eg. [math]y=x^5+2x^4+3x^2\Rightarrow\frac{dy}{dx}=5x^4+8x^3+6x[/math][/*][*]Find the gradient of a curve at a specific point by substituting the x-coordinate of that point into [math]\frac{dy}{dx}[/math][br][/*][/list]