IM Geo.1.9 Practice: Speedy Delivery

[size=150]Which construction can be used to determine whether point [math]C[/math] is closer to point [math]A[/math] or point [math]B[/math]?[/size]
[size=150]The diagram is a straightedge and compass construction. Lines [math]l,m,[/math] and [math]n[/math] are the perpendicular bisectors of the sides of triangle . [/size][br][img][/img][br]Select [b]all [/b]the true statements.
Decompose the figure into regions that are closest to each vertex. Explain or show your reasoning.
[size=150]Which construction could be used to construct an isosceles triangle [math]ABC[/math] given line segment [math]AB[/math]?[/size]
[size=150]Select [b]all[/b] true statements about regular polygons.[/size]
This diagram shows the beginning of a straightedge and compass construction of a rectangle.
[img][/img][br][size=150]The construction followed these steps:[/size][br][list][*]Start with two marked points [math]A[/math] and [math]B[/math][/*][*]Use a straightedge to construct line [math]AB[/math][/*][*]Use a previous construction to construct a line perpendicular to [math]AB[/math] passing through [math]A[/math][/*][*]Use a previous construction to construct a line perpendicular to [math]AB[/math] passing through [math]B[/math][/*][*]Mark a point [math]C[/math] on the line perpendicular to [math]AB[/math] passing through [math]A[/math][/*][/list][br]Explain the steps needed to complete this construction.
This diagram is a straightedge and compass construction.
Is it important that the circle with center [math]B[/math] passes through [math]D[/math] and that the circle with center [math]D[/math] passes through [math]B[/math]? Show or explain your reasoning.
Close

Information: IM Geo.1.9 Practice: Speedy Delivery