IM 7.5.13 Lesson: Expressions with Rational Numbers

Decide if the statement is true or false.
[math]\left(-38.76\right)\left(-15.6\right)[/math] is negative
Explain your reasoning.[br]
Decide if the statement is true or false.
[math]10000-99999[/math]<[math]0[/math]
Explain your reasoning.[br]
Decide if the statement is true or false.
[math]\left(\frac{3}{4}\right)\left(-\frac{4}{3}\right)=0[/math]
Explain your reasoning.[br]
Decide if the statement is true or false.
[math]\left(30\right)\left(-80\right)-50=50-\left(30\right)\left(-80\right)[/math]
Explain your reasoning.[br]
Group the expressions below into pairs that have the same value.
For each set of values for a and b, evaluate the given expressions and record your answers in the table.
[size=150]When [math]a=-\frac{1}{2}[/math] and [math]b=6[/math], which expression:[br][/size][br]has the largest value?
has the smallest value?[br]
is the closest to zero?[br]
[size=150]When [math]a=\frac{1}{2}[/math] and [math]b=-6[/math], which expression:[/size][br][br]has the largest value?
has the smallest value?
is the closest to zero?
[size=150]When [math]a=-6[/math] and [math]b=-\frac{1}{2}[/math], which expression:[/size][br][br]has the largest value?
has the smallest value?
is the closest to zero?
[size=150]Are there any values you could use for [math]a[/math] and [math]b[/math] that would make all of these expressions have the same value? Explain your reasoning.[/size]
[size=150]A seagull has a vertical position [math]a[/math], and a shark has a vertical position [math]b[/math].[/size][br][img][/img][br][br]In the applet below, you may choose to start by clicking on the open circles on the seagull and shark to drag them to new vertical positions. Once you have them in place, drag each of the other animals to the vertical axis to show its position, determined by the expression next to it.[br][list=1][*]A dragonfly at [math]d[/math], where [math]d=-b[/math] [br][/*][*]A jellyfish at [math]j[/math], where [math]j=2b[/math][br][/*][*]An eagle at [math]e[/math], where [math]4e=a[/math].[br][/*][*]A clownfish at [math]c[/math], where [math]c=\frac{-a}{2}[/math][br][/*][*]A vulture at [math]v[/math], where [math]v=a+b[/math][br][/*][*]A goose at [math]g[/math], where [math]g=a-b[/math][br][/*][/list]
Close

Information: IM 7.5.13 Lesson: Expressions with Rational Numbers