[img][/img]
Describe how the number of people who can sit at the tables changes with each step.[br]
Explain why [math]P(3.2)[/math] does not make sense in this scenario.[br]
Define [math]P[/math] recursively and for the [math]n^{th}[/math] term.[br]
Does [math]h(1.52)[/math] make sense? Explain how you know.[br]
[size=150]A person cuts off [math]\frac{1}{4}[/math] of the piece of paper. Then a second person cuts off [math]\frac{1}{4}[/math] of the remaining paper. A third person cuts off [math]\frac{1}{4}[/math] what is left, and so on.[/size]
Define [math]A[/math] for the [math]n^{th}[/math] term.[br]
What is a reasonable domain for the function [math]A[/math]? Explain how you know.[br]
[math]f(1)=35,f(n)=f(n-1)-8[/math] for [math]n\ge2[/math].[br][br]List the first 5 terms of the sequence.[br]
[img][/img][br]Define [math]q[/math] recursively using function notation.
[math]f(0)=19,f(n)=f(n-1)-6[/math][size=150] for [math]n\ge1[/math].[br] The definition for the [math]n^{th}[/math] term is [math]f(n)=19-6\cdot n[/math] for [math]n\ge0[/math].[/size][br][br]Explain how you know that these definitions represent the same sequence.[br]
Select a definition to calculate [math]f(20)[/math], and explain why you chose it.[br]
Explain how you would calculate the value of the 500th term.