[color=#000000][b]Note:[/b][/color] [color=#000000][br]For the [/color][color=#bf9000][b]yellow quadric surface[/b][/color][color=#000000] shown, cross sections (of this surface) parallel to the [/color][color=#1e84cc][b]blue plane[/b][/color][color=#000000] are circles. [br][br]What [/color][color=#bf9000][b]geometric solid's[/b][/color][color=#000000] definition is dynamically being illustrated here? [br]How would you define this term based upon what you see? [br][/color][color=#1e84cc][b]Point P[/b][/color][color=#000000] is a point on [/color][color=#bf9000][b]this solid[/b][/color][color=#000000]. Feel free to move [/color][color=#1e84cc][b]point P[/b][/color][color=#000000] anywhere you'd like![/color]
[color=#000000]Definition of a [/color][color=#bf9000][b]Circular Paraboloid of Revolution[/b][/color][color=#000000]: [br][br]A [/color][color=#bf9000][b]Circular Paraboloid of Revolution[/b][/color][color=#000000] is a locus of all points (in space) that are equidistant from another (fixed) point (called the focus) and a [/color][color=#1e84cc][b]fixed plane[/b][/color][color=#000000]. [/color]