Basic Constructions

#1 CONSTRUCT A COPY OF A SEGMENT
[list=1][*][b][/b]Select the [b] [/b][b][i][u]Segment[/u][/i][/b] tool [icon]/images/ggb/toolbar/mode_segment.png[/icon]from the menu and create a segment to the right of segment AB[b] (make sure its longer than AB and not connected to AB)[/b]. Creating Segment CD.[b][br][/b][/*][*]Select the [b][i][u]Compass[/u][/i][/b] tool[icon]/images/ggb/toolbar/mode_compasses.png[/icon]:  Create a circle C with Radius AB. To do this, select point B, then select point A, then click point C to center the circle at point C.[br][/*][*]Select the [b][i][u]Intersect[/u][/i][/b] tool [icon]/images/ggb/toolbar/mode_intersect.png[/icon] from the menu and select the intersection created by the circle C and segment CD, creating point E at the intersection.[/*][*]Select the [u]Distance or Length[/u] tool [icon]/images/ggb/toolbar/mode_distance.png[/icon]from the menu. Measure the length of AB and CE. To do this select points A and B, then select points C and E. Be sure the two measures are congruent. [/*][*][b]Use the text tool to type your first name[/b], and then continue on to the next Construct.[/*][/list]
#2 SEGMENT BISECTOR / PERPENDICULAR BISECTOR CONSTRUCTION
[list=1][*]Select the [b][u][i]Compass[/i][/u][/b] tool from the menu and select point A, then select point B. Click point A to center the circle at A.[/*][*]Select the [b][i][u]Compass[/u][/i][/b] tool:  and select point B, then select point A. Click point B to center the circle at B.[/*][*]Select the [b][i][u]Intersect[/u][/i][/b] tool from the menu and select the two intersections created by the circles, creating points C and D at the intersections.[/*][*]Select the [b][i][u]Segment[/u][/i][/b] tool from the menu and click on point C, then on point D. Creating an intersection of segment AB and segment CD. [/*][*]Select the [b][i][u]Intersect[/u][/i][/b] tool from the menu and click on the intersection of segment AB and CD. Creating point E. **Point E is the midpoint of segment AB and Segment CD. **[/*][*]Select the [b][u][i]Distance or Length[/i][/u][/b] tool from the menu. Select point A and Point E. Select point B and E. Be sure the two measures are congruent. [/*][*][b]Use the text tool to type your favorite ice cream flavor[/b], and then continue on to the next construct.[/*][/list]
#3 Construct a Congruent Angle
[list=1][*]Select the [b][u][i]Compass[/i][/u][/b] [icon]/images/ggb/toolbar/mode_compasses.png[/icon]tool from the menu and select [b][u][i]vertex[/i][/u][/b] B, then select point C. Click point B to center the circle at B.[/*][*]Select the [b][i][u]Intersect[/u][/i][/b] [icon]/images/ggb/toolbar/mode_intersect.png[/icon]tool from the menu and select the circle created in step 1, and segment BA, creating point F at the intersection.[/*][*]Select the [b][u][i]Compass[/i][/u][/b] [icon]/images/ggb/toolbar/mode_compasses.png[/icon]tool from the menu and select [b][u][i]vertex[/i][/u][/b] B, then select point C. Click point D to center the circle at D. [/*][*]Select the [b][i][u]Intersect[/u][/i][/b] [icon]/images/ggb/toolbar/mode_intersect.png[/icon]tool from the menu and select the circle centered at D and the ray DE, creating point G at the intersection.[/*][*]Select the [b][u][i]Compass[/i][/u][/b] [icon]/images/ggb/toolbar/mode_compasses.png[/icon]tool from the menu and select [i]point[b] [/b]C[/i], then select point F. Click point C to center the circle at C.[/*][*]Select the [b][u][i]Compass[/i][/u][/b] [icon]/images/ggb/toolbar/mode_compasses.png[/icon]tool from the menu and select [i]point[b] [/b]C[/i], then select point F. Click point G to center the circle at G. [/*][*]Select the [b][i][u]Intersect[/u][/i][/b] [icon]/images/ggb/toolbar/mode_intersect.png[/icon]tool from the menu and click on circle D and circle G. Creating point H at the intersection of the two circles. [/*][*]Select the [b][u]R[/u][/b][u][b]ay tool[icon]/images/ggb/toolbar/mode_ray.png[/icon][/b][/u][b] [/b]from the menu and click points D and then point H. Creating ray DH. [/*][*]Measure the angle using the [b][u]angle tool[/u][/b] from the menu by selecting the angle tool from the menu, clicking point G, then vertex D, then point H. Make sure the measures of angle B and angle D are congruent.[/*][*][b]Use the text tool to type your favorite color[/b], and then continue on to the next construct.[/*][/list]
#4 Construct an Angle Bisector
[list=1][*]Select the [b][u][i]Circle with Center through Point[/i][/u][/b] [icon]https://www.geogebra.org/images/ggb/toolbar/mode_circle2.png[/icon]tool from menu. Click on point B and anywhere between point B and C. Creating point D on segment BC. [/*][*]Select the [b][i][u]Intersect[/u][/i][/b] [icon]/images/ggb/toolbar/mode_intersect.png[/icon]tool from the menu. Select the circle created from step 1, and segment AB creating point E at the intersection. [/*][*]Select the [b][u][i]Circle with Center through Point[/i][/u][/b] [icon]https://www.geogebra.org/images/ggb/toolbar/mode_circle2.png[/icon] tool from the menu. Select point D then point E, creating a circle with a radius congruent to DE. [/*][*]Select the [b][u][i]Circle with Center through Point[/i][/u][/b] [icon]https://www.geogebra.org/images/ggb/toolbar/mode_circle2.png[/icon] tool from the menu. Select point E then point D, creating a circle with a radius congruent to DE.[br][/*][*]Select the [b][i][u]Intersect[/u][/i][/b] [icon]https://www.geogebra.org/images/ggb/toolbar/mode_intersect.png[/icon]tool from the menu. Click the circles created from step 2 and 3, and creating point F and point G at the intersections.[br][/*][*]Select the [b][i][u]Ray[icon]/images/ggb/toolbar/mode_ray.png[/icon][/u][/i][/b] tool from the menu. Click vertex B and either point G OR F. Creating Ray BG, or BF which bisects angle ABC.[/*][*]Select the [b][i][u]angle[/u][/i][/b] [icon]/images/ggb/toolbar/mode_angle.png[/icon]tool from the menu. Click points D, then B, then F, creating angle DBF. [/*][*]Select the [b][i][u]angle[/u][/i][/b] [icon]/images/ggb/toolbar/mode_angle.png[/icon]tool from the menu. Click points F, then B, then E, creating angle FBE.[/*][*]Compare angles DBF and FBE to make sure they're congruent. [/*][*][b]Use the text tool to type your favorite Math Teacher this year ;p[/b], and then continue on to the next construct.[/*][/list]

Information: Basic Constructions