Phase portraits (AI HL 5.17)

[br][table][br][br][tr][br][td]Phase portraits[/td][br][td]位相肖像[/td][br][td]위상 초상화[/td][br][td]相图[/td][br][/tr][br][tr][br][td]Differential equations[/td][br][td]微分方程式[/td][br][td]미분 방정식[/td][br][td]微分方程[/td][br][/tr][br][tr][br][td]Equilibrium points[/td][br][td]平衡点[/td][br][td]평형점[/td][br][td]平衡点[/td][br][/tr][br][tr][br][td]Stable points[/td][br][td]安定点[/td][br][td]안정점[/td][br][td]稳定点[/td][br][/tr][br][tr][br][td]Unstable points[/td][br][td]不安定点[/td][br][td]불안정점[/td][br][td]不稳定点[/td][br][/tr][br][tr][br][td]Saddle points[/td][br][td]鞍点[/td][br][td]안장점[/td][br][td]鞍点[/td][br][/tr][br][tr][br][td]Visual analysis[/td][br][td]視覚分析[/td][br][td]시각적 분석[/td][br][td]视觉分析[/td][br][/tr][br][tr][br][td]Numerical solutions[/td][br][td]数値解[/td][br][td]수치 해법[/td][br][td]数值解[/td][br][/tr][br][tr][br][td]Coupled differentials[/td][br][td]結合微分[/td][br][td]결합 미분[/td][br][td]耦合微分[/td][br][/tr][br][/table][br]
Inquiry questions
[table][br][tr][br][td][b]Factual Inquiry Questions[/b][/td][br][td][b]Conceptual Inquiry Questions[/b][/td][br][td][b]Debatable Inquiry Questions[/b][/td][br][/tr][br][tr][br][td]What is a phase portrait in the context of differential equations?[/td][br][td]Why are phase portraits useful for understanding the behavior of dynamical systems?[/td][br][td]Is the visual analysis of phase portraits more intuitive and effective than numerical solutions for predicting the behavior of dynamical systems?[/td][br][/tr][br][tr][br][td]How are equilibrium points represented in phase portraits?[/td][br][td]How do the characteristics of equilibrium points (such as stable, unstable, and saddle points) affect the overall dynamics represented in a phase portrait?[/td][br][td]Can the study of phase portraits provide insights into chaotic systems in a way that traditional analytical methods cannot?[/td][br][/tr][br][tr][br][td][/td][br][td][/td][br][td]How might the application of phase portraits evolve with advancements in visualization technology and computational mathematics?[/td][br][/tr][br][/table][br]
The Dynamics of Dance
Scenario: The Dynamics of Dance[br][br]Background:[br]In the vibrant land of Vectoria, dances are not just performances but complex interactions of forces and movements, studied and perfected through the use of mathematics. The Vectorian Dance Academy uses a sophisticated applet to model these interactions as phase portraits of coupled differentials, capturing the dynamic flow of their dancers' movements.[br][br]Objective:[br]As a choreographer at the academy, your challenge is to use the "Phase Portraits of Coupled Differentials" applet to create a harmonious and visually appealing dance sequence that follows the mathematical models of motion.[br][br]Investigation Steps:[br][br]1. Setting the Stage:[br] - Use the applet to adjust the parameters (a, b, c, d) which represent the influence of one dancer's movement on another.[br] - Set the initial starting point, representing the initial position and momentum of the lead dancer.[br][br]2. Choreographing the Dance:[br] - Observe how changes in parameters affect the trajectories of the dancers.[br] - Aim to create a phase portrait that is both aesthetically pleasing and feasible for dancers to perform.[br][br]3. Simulating the Performance:[br] - Start the animation to visualize the flow of the dance.[br] - Experiment with different starting points and parameters to refine the movements.[br][br]4. Finalizing the Routine:[br] - Once satisfied with the simulated dance, stop the animation and note down the final parameters and positions.[br] - Translate the mathematical model into actual choreography for the dancers to rehearse.[br][br]Questions for Investigation:[br][br]1. Discovery Question:[br] - How do changes in the coupled differential equations' parameters alter the complexity and style of the dance?[br][br]2. The Art of Mathematics:[br] - In what ways does the phase portrait provide insights into the rhythm and synchronization of the dancers?[br][br]3. The Choreographer's Palette:[br] - How might you use the slope field feature to adjust the fluidity and direction of the dance moves?[br][br]4. Reflection:[br] - Reflect on the relationship between mathematical models and artistic expression.[br]
Sketching phase portraits
Phase portraits- Intuition pump (thought experiments and analogies)

Information: Phase portraits (AI HL 5.17)