修改自:[url=https://www.geogebra.org/u/mgje]Martin Guggisberg[/url] 的 Sonnenblume gross,https://www.geogebra.org/m/bs4behhf
[br]黄色圆[br]l1=序列(圆周((r(i) posx(i),r(i) posy(i)),0.9 sqrt(r(i)-1)),i,1,1900)[br][img][/img][br]kb=连分式(k,16)[br][img][/img][br][br][br]posx(x)=r(x) cos(x w)[br]posy(x)=r(x) sin(x w)[br]r(x)=sqrt(t-x+1) a[br]k=((w)/(360°))
或可用[br][br]l5=序列(旋转(圆周((r f sqrt(i),0),((r)/(8)) ln(sqrt(i+1))+((r)/(4))),i w),i,1,N)[br][br]参:[url=https://www.geogebra.org/m/cq5yb2fu]Wachstum Sonnenblume2 – GeoGebra[/url]