[math]2-2+20-20+200-200[/math]
[math]100-50+10-10+50-10[/math]
[math]3+2+1+0-1-2-3[/math]
[math]1+2+4+8+16+32-16-8-4-2-1[/math]
How do you see [math]2+3i[/math] represented?
How do you see [math]\text{-}8-8i[/math] represented?[br]
What complex number does [math]A[/math] represent?[br]
Add “like terms” in the expression [math](2+3i)+(\text{-}8-8i)[/math]. What do you get?[br]
[size=100][size=150]Write these sums and differences in the form [math]a+bi[/math], where [math]a[/math] and [math]b[/math] are real numbers.[/size][/size][br][math](\text{-}3+2i)+(4-5i)[/math] (Check your work by drawing a diagram in the applet below.)[br]
[math](\text{-}37-45i)+(11+81i)[/math]
[math](\text{-}3+2i)-(4-5i)[/math]
[math](\text{-}37-45i)-(11+81i)[/math]
Write [math]2i[/math] in the form [math]a+bi[/math].
Write [math](2i)^2[/math] in the form [math]a+bi[/math].
Write [math](2i)^3[/math] in the form [math]a+bi[/math].[br]
Write [math](2i)^4[/math] in the form [math]a+bi[/math].[br]
[size=150]Plot [math]2i[/math], [math](2i)^2[/math], [math](2i)^3[/math], and [math](2i)^4[/math] on the complex plane.[/size]
If [math]a[/math] and [math]b[/math] are positive numbers, is it true that [math]\sqrt{ab}=\sqrt{a}\sqrt{b}[/math]? Explain how you know.[br]
If [math]a[/math] and [math]b[/math] are negative numbers, is it true that [math]\sqrt{ab}=\sqrt{a}\sqrt{b}[/math]? Explain how you know.