Das Applet zeigt das Richtungsfeld für die Differentialgleichung y' = k·y.[br]Dabei können die Grenzen des Richtungsfelds, der Faktor k, die Anzahl und die Länge der Linienelemente variiert werden.[br]Die allgemeine Lösung der Differentialgleichung lautet [math]y = c·e ^{k·x}[/math].[br]Eine spezielle Lösung, die durch den Punkt P geht, ist eingezeichnet.[br][br][b]Aufgabe[/b][br]Verändere mit den Schiebereglern die Werte für k, n und a.[br]Verschiebe den Punkt P und beobachte die Auswirkungen.