IM 8.4.7 Lesson: All, Some, or No Solutions

Which one doesn’t belong?
[list=1][*][math]5+7=7+5[/math] [/*][*][math]5\cdot7=7\cdot5[/math][/*][*][math]2=7-5[/math][br][/*][*][math]5-7=7-5[/math][br][/*][/list][br]Explain your reasoning.
Select all the equations that are true for [i]all[/i] values.
Select all the equations that are true for [i]no[/i] values.[br]
Write the other side of this equation so that this equation is true for all values of [math]u[/math].[br][br][math]6(u-2)+2=[/math]
Write the other side of this equation so that this equation is true for no values of [math]u[/math]. [br][br][math]6(u-2)+2=[/math]
Consecutive numbers follow one right after the other. An example of three consecutive numbers is 17, 18, and 19. Another example is -100, -99, -98.
 [size=150]How many sets of two or more consecutive positive integers can be added to obtain a sum of 100?[/size]
Complete each equation so that it is true for all values of x.
[math]3x+6=3(x+\underscore\underscore)[/math]
[math]x-2=-(\underscore\underscore-x)[/math]
[math]\frac{15x-10}{5}=\underscore\underscore-2[/math]
Complete each equation so that it is true for no values of x.
[math]3x+6=3(x+\underscore\underscore)[/math]
[math]x-2=-(\underscore\underscore-x)[/math]
[math]\frac{15x-10}{5}=\underscore\underscore-2[/math]
[size=150]Describe how you know whether an equation will be true for all values of [math]x[/math] or true for no values of [math]x[/math].[/size]
Schließen

Information: IM 8.4.7 Lesson: All, Some, or No Solutions