IM Geo.6.17 Lesson: Lines in Triangles

If you have tracing paper, draw a triangle on it. Fold the altitude from each vertex. If not, observe the applet below.
Triangle ABC is graphed.
Find the slope of each side of the triangle.[br]
Find the slope of each altitude of the triangle.[br]
[list][*]Sketch the altitudes. [/*][*]Label the point of intersection [math]H[/math].[br][/*][/list][br]Write equations for all 3 altitudes.[br]
Use the equations to find the coordinates of [math]H[/math] and verify algebraically that the altitudes all intersect at [math]H[/math].[br]
[size=150]Any triangle [math]ABC[/math] can be translated, rotated, and dilated so that the image [math]A'[/math] lies on the origin, [math]B'[/math] lies on the point [math]\left(1,0\right)[/math], and [math]C'[/math] has position [math]\left(a,b\right)[/math].[/size][br][br]Use this as a starting point to prove that the altitudes of all triangles all meet at the same point.
Triangle ABC is graphed.
Find the midpoint of each side of the triangle.[br]
[list][*]Sketch the perpendicular bisectors, using the Midpoint and Perpendicular Line tools. [/*][*]Label the intersection point [math]P[/math].[br][/*][/list]Write equations for all 3 perpendicular bisectors.[br][br]
Use the equations to find the coordinates of [math]P[/math] and verify algebraically that the perpendicular bisectors all intersect at [math]P[/math].[br]
Consider triangle ABC from an earlier activity.
What is the distance from [math]A[/math] to [math]P[/math], the intersection point of the perpendicular bisectors of the triangle’s sides? Round to the nearest tenth.[br]
Write the equation of a circle with center [math]P[/math] and radius [math]AP[/math].[br]
[list][*]Construct the circle. [/*][/list][br]What do you notice?[br]
Verify your hypothesis algebraically.[br]
Consider triangle ABC from earlier activities.
[list][*]Plot point [math]H[/math], the intersection point of the altitudes.[br][/*][*]Plot point [math]P[/math], the intersection point of the perpendicular bisectors.[br][/*][*]Find the point where the 3 medians of the triangle intersect. Plot this point and label it [math]J[/math].[br][/*][/list][br]What seems to be true about points [math]H[/math], [math]P[/math], and [math]J[/math]?
Prove that your observation is true.[br]
A tessellation covers the entire plane with shapes that do not overlap or leave gaps.
[size=150]Tile the plane with congruent rectangles:[/size][br][br]Draw the rectangles on your grid.[br]
Write the equations for lines that outline 1 rectangle.[br]
[size=150]Tile the plane with congruent right triangles:[/size][br][br]Draw the right triangles on your grid.[br]
Write the equations for lines that outline 1 right triangle.[br]
[size=150]Tile the plane with any other shapes:[/size][br][br]Draw the shapes on your grid.[br]
Write the equations for lines that outline 1 of the shapes.[br]

IM Geo.6.17 Practice: Lines in Triangles

[size=150]The 3 lines [math]x=3[/math], [math]y-2.5=-\frac{1}{5}\left(x-0.5\right)[/math], and [math]y-2.5=x-3.5[/math] intersect at point [math]P[/math].[/size][br][br]Find the coordinates of [math]P[/math]. Verify algebraically that the lines all intersect at [math]P[/math].
[size=150]Triangle [math]ABC[/math] has vertices at [math]\left(0,0\right)[/math], [math]\left(5,5\right)[/math], and [math]\left(10,1\right)[/math]. Kiran calculates the point of intersection of the medians using the following steps:[br][/size][br][list=1][*]Draw the triangle.[/*][*]Calculate the midpoint of each side.[/*][*]Draw the medians.[/*][*]Write an equation for 2 of the medians.[/*][*]Solve the system of equations.[/*][/list][br]Use Kiran’s method to calculate the point of intersection of the medians.
Triangle ABC and its medians are shown.
[img][/img][br][br]Write an equation for median [math]AE[/math].
[size=150]Given [math]A=\left(1,2\right)[/math] and [math]B=\left(7,14\right)[/math], find the point that partitions segment [math]AB[/math] in a [math]2:1[/math] ratio.[/size]
[size=150]A quadrilateral has vertices [math]A=\left(0,0\right)[/math], [math]B=\left(4,6\right)[/math], [math]C=\left(0,12\right)[/math], and [math]D=\left(-4,6\right)[/math].[br]Mai thinks the quadrilateral is a rhombus and Elena thinks the quadrilateral is a square.[/size][br][br]Do you agree with either of them? Show or explain your reasoning.  
[size=150]The image shows a graph of the parabola with focus [math]\left(-3,-2\right)[/math] and directrix [math]y=2[/math], and the line given by [math]y=-3[/math].[/size][br][br][img][/img][br][br]Find and verify the points where the parabola and the line intersect.
[img][/img][br][br][size=150]For each equation, is the graph of the equation parallel to the line shown, perpendicular to the line shown, or neither?[/size][br][br][math]y=0.25x[/math]
[math]y=2x-4[/math]
[math]y-2=-4\left(x-3\right)[/math]
[math]2y+8x=7[/math]
[math]x-4y=3[/math]
[size=150]Write 2 equivalent equations for a line with [math]x[/math]-intercept [math]\left(3,0\right)[/math] and [math]y[/math]-intercept [math]\left(0,2\right)[/math]. [/size]
[size=150]Parabola A and parabola B both have the line [math]y=-2[/math] as the directrix. Parabola A has its focus at [math]\left(3,4\right)[/math] and parabola B has its focus at [math]\left(5,0\right)[/math].[/size][size=150]Select [b]all[/b] true statements.[/size]

Information