Unit 1.1.1 (a) Function

1. (a) Define linear function with example.[br][br]Solution:[br]If a function can be expressed as [math] f(x) = ax + b [/math] , Where [math] a [/math] and [math] b [/math] are constants, then the function is called linear function.[br][br]1. (b) What is the coordinates of vertex of [math] f(x) = ax^2 + bx +c, a\neq 0 [/math] [br][br]Solution: [br]The vertex of [math] f(x) = ax^2 +bx^2 + c [/math] is [br] [math] (h, k) = \left( -\frac{-b}{2a}, \frac{4ac-b^2 }{4a} \right) [/math] [br][br]1. (c) Identify the identity function: [math] f(x) = 5 [/math] and [math] f(x) = x [/math] [br][br]Solution: Identity function is [math] f(x) = x [/math] .[br][br]2. (a) Study the following graphs and identitify their nature as identity, constant, quadratic and cubic function.[br]Solution:[br][img][/img][br]This is a graph of constant function.[br][img][/img][br]This is a graph of identity function.[br][br][img][/img][br]This is a graph of cubic function.[br][br][img][/img][br]This is a graph of quadratic function.[br][br][img][/img][br]This is a graph of cubic function[br][br][img][/img][br]This is a graph of quadratic function.[br][br]3. (a) Draw the graph of [math] y = x+ 2 [/math] [br]Solution:[br]Given, [math] y = x + 2 [/math][br][math] \begin{tabular} {|c|c|c|c| } \hline x&1&2&3 \\ \hline y& 3 & 4 & 5 \\ \hline \end{tabular} [/math][br]Therefore, passing points are (1,3),(2,4) and (3,5).[br][img][/img][br][br]3. (b) Draw the graph of [math] y = 6 [/math] [br]Solution:[br]Here [math] y = 6 [/math] represents the horizontal line passing through (0,6) .[br][img][/img][br]3. (c) Draw the graph of [math] y = x^2 [/math] [br]Solution:[br]Given, [math] y = x^2 [/math] [br][math] \begin{tabular} {|c|c|c|c|c|c|c|c|c| } \hline [br]x&-3&-2&-1&0&1&2&3 \\ \hline [br]y& 9 & 4 & 1 & 0 & 1 & 4 & 9 \\ \hline \end{tabular} [/math] [br]Hence passing points are (-3,9), (-2,4), (-1,1), (0,0), (1,1), (2,4) and (3,9).[br][img][/img][br]3. (d) Draw the graph of [math] y = -x^2 [/math] [br]Solution:[br]Given, [math] y = -x^2 [/math][br][math] \begin{tabular} {|c|c|c|c|c|c|c|c|c| } \hline [br]x&-3&-2&-1&0&1&2&3 \\ \hline [br]y& - 9 & - 4 & - 1 & 0 & - 1 & - 4 & - 9 \\ \hline \end{tabular} [/math][br]Hence, the passing points are (-3,-9), (-2,-4), (-1,-1), (0,0), (1,-1), (2,-4) and (3,-9).[br][img][/img][br][br]3. (e) Draw graph of [math] y = x^3 [/math] [br]Solution:[br]Given, [math] y = x^3 [/math][br]Now, [math] \begin{tabular} {|c|c|c|c|c|c|c|c|c| } \hline [br]x&-3&-2&-1&0&1&2&3 \\ \hline [br]y& - 27 & - 8 & - 1 & 0 & 1 & 8 & 27 \\ \hline \end{tabular} [/math][br][img][/img][br][br]4. Pemba estimates the minimum ideal weight of a woman, in pounds is to multiply her height, in inches by 4 and subtract 130. Let y = minimum ideal weight and x = height.[br][br](a) Express y as a linear function of x.[br][br]Solution:[br][math] y = 4x - 130 ...(i) [/math][br][br](b) Find the minimum ideal weight of a woman whose height is 62 inches.[br]Solution:[br]Here,[br] [math] \begin{align}[br]\ & y = 4x - 130...(i) \\[br]\text{Putting } x = 62 \text{ in equation(i), we get,}\\[br]\ & y = 4\times 62 - 130 \\[br] \ & or, y = 248 - 130 \\[br]\ & \therefore y = 118 \text{ pounds.} \end{align} [/math][br][br](c) Draw the graph of height and weight[br]Solution:[br]Here,[br]We have, [math] y = 4x - 130 [/math][br][math] \begin{tabular} {|c|c|c|c|c|} \hline [br]x&0 & 5 & 20& 40 \\ \hline [br]y& -130& -110 & -50 & 30 \\ \hline \end{tabular} [/math][br][img][/img][br][br]5. Investigate the nature of graph showing linear, quadratic and cubic function in our daily life. Make a report and present it in classroom.[br]

Unit 1.2.1: Polynomial

Exercise 1.2.1
1. (a) Define polynomial of one variable.[br]Solution:[br]A polynomial in one variable is any expression of the type [br][math] a_nx^n + a_{n-1} x^{n-1} + … + a_2x^2 + a_1x+a_0, [/math][br]where [math] n [/math] is non-negative integer and [math] a_n, a_{n-1} … a_0 [/math] are real numbers, called coefficients. [math] a_nx^n [/math] is called the leading term of the polynomial. [math] 'n' [/math] is degree of the polynomial. [br][br](b) If [math] p(x), q(x), d(x) [/math] and [math] r(x) [/math] represent polynomial, quotient, divisor and remainder respectively. Write the relation among them.[br]Solution:[br]We know, Polynomial = Divisor x Quotient + Remainder[br][math] \therefore p(x) = d(x) \times q(x) + r(x) [/math] [br][br]2. Divide using long division method and find quotient and remainder in each of the following:[br][br](a) [math] x^2 - 10x + 21 \div (x-3) [/math] [br]Solution:[br][img][/img][br]Quotient [math] Q(x) = x- 7 [/math] and remainder [math] (R) = 0 [/math] [br][br](b) [math] x^3 + 2x^2 -5x-6 \div (x+1) [/math] [br]Solution:[br][img][/img][br]Quotient [math] Q(x) = x^2 + x -6 [/math] and Remainder [math] (R) = 0 [/math][br][br](c) [math] x^3 - 8 \div (x-2) [/math] [br]Solution:[br][img][/img][br]Quotient [math] Q(x) = x^2 + 2x + 4 [/math] and Remainder [math] R = 0 [/math] [br][br](d) [math] x^3+9x^2+27x+27 \div (x+3) [/math] [br]Solution:[br][img][/img][br]Quotient [math] Q(x) = x^2+6x+9 [/math] Remainder [math] (R) = 0 [/math][br][br]3. Divide using long division method and find quotient and remainder.[br][br](a) [math] x^3 + 2x^2 -5x -7 \div (x+1) [/math] [br]Solution:[br][img][/img][br]Quotient [math] Q(x) = x^2 + x - 6 [/math] and Remainder [math] (R) = - 1 [/math] [br][br](b) [math] x^3 - 10x^2 + 16x + 26 \div (x-5) [/math] [br]Solution:[br][img][/img][br]Quotient [math] Q(x) = x^2 - 5x - 9 [/math] and Remainder [math] R = - 19 [/math] [br][br](c) [math] 2x^4+5x^2-3x-7 \div ( 2x-1 ) [/math] [br]Solution:[br][img][/img][br][math] \therefore [/math] Quotient [math] Q(x) = x^3 +\frac{1}{2} x^2 + \frac{11}{4} - \frac{1}{8} [/math] and Remainder [math] ( R ) = \frac{-57}{8} [/math] [br][br](d) [math] y^5 +y^3 - y \div (3-y) [/math] [br]Solution:[br][img][/img][br][math] \therefore [/math] Quotient [math] Q(y) = -y^4 - 3y^3 - 10y^2 - 30y - 89 [/math] and Remainder [math] ( R ) = 267 [/math][br][br]4. For the function [math] f(y) = y^3 – y^2 – 17y – 15,[/math] use long division to determine whether each of the following is a factor of [math] f(y) [/math] or not.[br][br](a) [math] y + 1 [/math] [br]Solution:[br][img][/img][br]Here, remainder is 0. So [math] y+1 [/math] is a factor of [math] f(y) [/math] [br][br](b) [math] y + 3 [/math] [br]Solution:[br][img][/img][br]Since, remainder is 0, [math] y+3 [/math] is a factor of [math] f(y) [/math] [br](c) [math] y + 5 [/math] [br]Solution:[br][img][/img][br]As remainder [math] = - 80 \neq 0 [/math], [math] y+5 [/math] is not factor of [math] f(y) [/math] [br](d) [math] y - 1 [/math] [br]Solution:[br][img][/img][br]As remainder [math] = -32 \neq 0 [/math], [math] y - 1 [/math] is not a factor of [math] f(y) [/math].[br][br](e) [math] y - 5 [/math] [br]Solution:[br][img][/img][br]As remainder [math] = 0 [/math], [math] y -5 [/math] is a factor of [math] f(y) [/math] [br][br]5. For the polynomial [math] p(x) = x^4 – 6x^3 + x – 2 [/math] and divisor [math] d(x) = x – 1, [/math] use long division to find the quotient [math] Q(x) [/math] and the remainder [math] R(x) [/math] when [math] P(x) [/math] is divided by [math] d(x).[/math] Express [math] p(x) [/math] in the form of [math] d(x). Q(x) + R(x). [/math] Write your finding.[br]Solution:[br]Here,[br] [math] p(x) = x^4 - 6x^3 + x - 2 [/math][br] [math] d(x) = x-1 [/math][br]Now,[br] [img][/img][br]Hence, Quotient [math] Q(x) = x^3 - 5x^2 - 5x -4 [/math][br]  Remainder [math] (R) = -6 [/math][br]We know,[br]  [math] p(x) = d(x). Q(x) + R(x) [/math][br][math] \therefore x^4 - 6x^3 + x -2 = (x-1)(x^3-5x^2-5x-4) - 6 [/math]

Multiple Angles

Multiple Angles
Exercise - 5.1 [ Page - 157 ][br]1. (a) Define multiple angle with an example.[br]Solution:[br]If A be any angle then 2A, 3A,.... etc are called multiple angles of A.[br][br]1. (b) Write [math]\cos2A[/math] in terms of [math] \cos A [/math] and [math]\sin A[/math][br]Solution: [br][math]\cos2A = 2\cos^2 A-1 [/math][br][math] \cos2A = 1- 2\sin^2 A [/math][br][br]2. (a) Write [math] \sin 2A [/math] in terms of [math] \tan A [/math][br]Solution:[br][math]\sin 2A = \frac{2 \tan A}{ 1-\tan^2 A } [/math][br][br]2(b) Write [math] \tan^2 A [/math] in terms of [math] \cos2A [/math][br]Solution:[br][math] \tan^2 A = \frac{1-\cos 2 A }{1+ \cos 2 A } [/math][br][br]2(c) Write [math] \sin3A [/math] in terms of [math] \sin A [/math].[br]Solution:[br][math] \sin 3A = 3\sin A - 4\sin^3 A [/math][br][br]2(d) Write [math]\tan3θ [/math] in terms of [math] \tan \theta[/math][br]Solution:[br][math] \tan 3\theta = \frac{ 3 \tan \theta -\tan^3 \theta}{1-3\tan^2 \theta} [/math][br][br]3.(a) If [math] \sin A = \frac{3}{5}[/math], find the value of [math] \cos 2A [/math].[br]Solution:[br]Given,[br][math] \sin A =\frac{3}{5} [/math][br]Now,[br][math] \begin{align} \cos 2A &=1-2\sin^2 A\\ \ &=1-2\times\left(\frac{3}{5} \right)^2\\ \ &= 1-\frac{18}{25}\\ \ &=\frac{25-18}{25}\\ \ &=\frac{7}{25}\\ \therefore \cos 2A &= \frac{7}{25} \end{align}[/math][br][br]3. (b) If [math] \sin 2A = \frac{ 24}{25} [/math] and [math] \sin A = \frac{4}{5}[/math] , then find the value of [math] \cos A [/math].[br]Solution:[br]Given,[br][math] \sin 2A = \frac{ 24}{25} [/math] and [br][math] \sin A = \frac{4}{5} [/math][br]We know that,[br][math] \begin{align} \sin 2A &=2\sin A \cos A \\ or,\frac{24}{25}&=2\times \frac{4}{5}\times \cos A\\ or,\frac{24}{25}&=\frac{8}{5}\times \cos A\\\\ or, \frac{3}{5}&=\cos A\\ \therefore \cos A &=\frac{3}{5} \\ \end{align} [/math][br][br]3(c) If [math] \sin A = \frac{4}{5} [/math], find the value of [math] \sin 2A [/math].[br]Solution:[br]Given[br][math] \sin A = \frac{4}{5} [/math][br]Now,[br][math] \begin{align} \sin 2A &=2\sin A \cos A\\ \ &=2\times \frac{4}{5}\times \frac{3}{5}\\ \ &= \frac{24}{25}\\ \therefore \sin 2A &= \frac{24}{25} \end{align} [/math][br][br]3(d) [math] \cos \theta = \frac{12}{13} [/math], find the value of [math] \sin 2\theta [/math] and [math] \cos 2\theta [/math].[br]Solution:[br]Given,[br][math] \cos \theta = \frac{12}{13} [/math][br]Now,[br][math] \begin{align} \cos 2\theta &=2\cos^2 \theta -1 \\ \ &=2\times\left(\frac{12}{13} \right)^2-1\\ \ &=2\times\left(\frac{144}{169} \right)-1\\ \ &= \frac{288}{169}-1\\ \ &=\frac{288-169}{169}\\ \ &=\frac{119}{169}\\ \therefore \cos 2\theta &= \frac{119}{169} \end{align} [/math][br]Again,[br][math] \begin{align} \sin 2\theta &= \sqrt{1- \cos^2 2\theta}\\ \ &=\sqrt{1-\left(\frac{119}{169}\right)^2}\\ \ &=\sqrt{1-\frac{14161}{28561}}\\ \ &=\sqrt{\frac{28561-14161}{28561}}\\ \ &=\sqrt{\frac{14400}{28561}}\\ \ &=\frac{120}{169}\\ \therefore \sin 2\theta &=\frac{120}{169} \end{align} [/math][br][br]3(e) If [math] \tan \theta = \frac{3}{4} [/math], find the value of [math] \sin 2\theta [/math] and [math] \tan 2\theta [/math][br]Solution:[br][math] \begin{align} \sin 2\theta &= \frac{2\tan \theta}{1+\tan^2 \theta }\\ \ &= \frac{2\left( \frac{3}{4} \right)}{1+ \left( \frac{3}{4} \right)^2} \\ \ &=\frac{\frac{6}{4}}{1+\frac{9}{16}}\\ \ & = \frac{\frac{6}{4}}{\frac{16+9}{16}}\\ \ & = \frac{\frac{6}{4}}{\frac{25}{16}}\\ \ & = \frac{6}{4}\times \frac{16}{25}\\ \ & = \frac{24}{25}\\ \therefore \sin 2\theta &= \frac{24}{25}\\ \end{align} [/math][br]And[br][math] \begin{align} \tan 2\theta &= \frac{2\tan \theta}{1-\tan^2 \theta }\\ \ &= \frac{2\left( \frac{3}{4} \right)}{1- \left( \frac{3}{4} \right)^2} \\ \ &=\frac{\frac{3}{2}}{1-\frac{9}{16}}\\ \ & = \frac{\frac{3}{2}}{\frac{16-9}{16}}\\ \ & = \frac{\frac{3}{2}}{\frac{7}{16}}\\ \ & = \frac{3}{2}\times \frac{16}{7}\\ \ & = \frac{24}{7}\\ \therefore \tan 2\theta & = \frac{24}{7}\\ \end{align} [/math][br][br]3. (f) If [math] \sin \alpha = \frac{1}{2} [/math], find the value of [math] \sin 3\alpha [/math] and [math] \cos 3\alpha [/math][br]Solution:[br][math] \begin{align}\sin 3\alpha &=3\sin \alpha -4\sin^3 \alpha \\ \ & = 3\left(\frac{1}{2}\right)-4\left(\frac{1}{2}\right)^3\\ \ & = \frac{3}{2}-4\times \frac{1}{8} \\ \ & = \frac{3}{2} - \frac{1}{2}\\ \ & = \frac{3-1}{2} \\ \ & = \frac{2}{2} \\ \ & = 1 \\ \therefore \sin 3\alpha &= 1 \\ \end{align} [/math][br]And[br][math] \begin{align} \cos 3\alpha &= \sqrt{1- \sin^2 3\alpha}\\ \ &=\sqrt{1-1}\\ \ & = \sqrt{0}\\ \ & = 0\\ \therefore cos 3\alpha &= 0 \\ \end{align} [/math][br]Alternative[br] [math] \begin{align} \sin \alpha &= \frac{1}{2} \\ or, \sin \alpha & = \sin 30^{\circ} \\ \therefore \alpha & = 30^{\circ}\ \end{align} [/math][br]Now[br][math] \begin{align} \sin 3\alpha &= \sin 3(30^{\circ})\\ \ &= \sin 90^{\circ} \\ \ & = 1\\ \therefore \sin 3\alpha &=1 \end{align} [/math][br][br]And[br][math] \begin{align} \cos 3\alpha &= \cos 3(30^{\circ})\\ \ &= \cos 90^{\circ}\\ \ & = 0\\ \therefore \cos 3\alpha &=0 \end{align} [/math][br][br]3. (g) If [math] \cos \alpha = \frac{ \sqrt{3}}{2} [/math], find the value of [math] \sin 3\alpha [/math] and [math] \cos 3\alpha [/math][br]Solution:[br][math] \begin{align} \cos \alpha &= \frac{\sqrt{3}}{2} \\ or, \cos \alpha & = \cos 30^{\circ} \\ \therefore \alpha & = 30^{\circ}\\ \end{align} [/math][br]Now,[br][math] \begin{align} \sin 3\alpha &= \sin 3(30^{\circ})\\ \ &= \sin 90^{\circ} \\ \ & = 1\\ \therefore \sin 3\alpha &=1 \end{align} [/math][br][br]And[br][math] \begin{align} \cos 3\alpha &= \cos 3(30^{\circ})\\ \ &= \cos 90^{\circ} \\ \ & = 0\\ \therefore \cos 3\alpha &=0 \end{align} [/math] [br][br]3. (h) If [math] \tan \beta = \frac{1}{2} [/math], find the value of [math] \tan 3\beta [/math].[br]Solution:[br]Given,[br][math] \tan \beta = \frac{1}{2} [/math] [br]Now,[br][math] \begin{align} \tan 3\beta &=\frac{3 \tan \beta -\tan^3 \beta}{1-3\tan^2 \beta}\\ \ &= \frac{3 \left(\frac{1}{2} \right)-\left(\frac{1}{2} \right)^3}{1-3\left(\frac{1}{2} \right)^2}\\ \ & = \frac{\frac{3}{2}-\frac{1}{8}}{1-\frac{3}{4}} \\ \ & = \frac{\frac{12-1}{8}}{\frac{4-3}{4}} \\ \ & = \frac{11}{8} \times \frac{4}{1} \\ \ & = \frac{11}{2}\\ \therefore \tan 3\beta &= \frac{11}{2}\\ \end{align} [/math][br][br]4. (a) If [math] \cos 2A = \frac{7}{25} [/math], then show that [math] \sin A = \frac{3}{5} [/math] [br]Given,[br][math] \cos 2A = \frac{7}{25} [/math][br]We know that,[br][math] \begin{align} \sin^2 A &=\frac{1-\cos 2A}{2}\\ \ & = \frac{1-\frac{7}{25}}{2}\\ \ & = \frac{\frac{25-7}{25}}{2}\\ \ & = \frac{\frac{18}{25}}{2}\\ \ & = \frac{18}{25}\times \frac{1}{2}\\ \ & = \frac{9}{25} \\ or, \sin^2 A & = \frac{9}{25}\\ or, \sin A & = \sqrt{\frac{9}{25}}\\ \therefore \sin A & = \frac{3}{5} \end{align} [/math][br][br]4.(b) If [math] \cos 2A = - \frac{ 1}{2} [/math], then show that [math] \cos A = \frac{1}{2} [/math].[br]Solution:[br]Given,[br][math] \cos 2A = - \frac{ 1}{2} [/math][br]We know that,[br][math] \begin{align} \cos^2 A &=\frac{1+\cos 2A}{2}\\ \ & = \frac{1+\left( \frac{-1}{2}\right) }{2}\\ \ & = \frac{\frac{2-1}{2}}{2}\\ \ & = \frac{\frac{1}{2}}{2}\\ \ & = \frac{1}{4}\\ or, \cos^2 A & = \frac{1}{4}\\ or, \cos A & = \sqrt{\frac{1}{4}}\\ \therefore \cos A & = \frac{1}{2}\\ \end{align} [/math][br][br]5. (a) Prove that: [math] \sin A = \pm \sqrt{\frac{1-\cos 2A}{2}} [/math][br]Solution:[br]First Method:[br][math] \begin{align} \cos 2A &= 1-2\sin^2 A\\ or, 2 \sin^2 A&=1-\cos 2A\\ or, \sin^2 A & = \frac{1-\cos 2A}{2}\\ \therefore \ \sin A&= \pm\sqrt{\frac{1 \cos 2A}{2}}\\ \end{align} [/math][br]Second Method:[br][math] \begin{align} \text{ RHS } & = \pm\sqrt{\frac{1-\cos 2A}{2}}\\ \ & = \pm\sqrt{\frac{1-(1-2\sin^2 A)}{2}}\\ \ & = \pm\sqrt{\frac{1-1+2\sin^2 A}{2}}\\ \ & = \pm\sqrt{\frac{2\sin^2 A}{2}}\\ \ & = \pm\sqrt{\sin^2 A}\\ \ & = \pm \sin A\\ \ & = \sin A\\ \ & = \text{ LHS } \\ \end{align} [/math][br][br]5. (b) Prove that: [math] \cos A = \pm \sqrt{\frac{1+\cos 2A}{2}} [/math][br]Solution:[br]First Method:[br][math] \begin{align} \cos 2A &= 2\cos^2 A -1\\ \cos 2A +1&= 2\cos^2 A \\ or, 2 \cos^2 A&=1+\cos 2A\\ or, \cos^2 A & = \frac{1+\cos 2A}{2}\\ \therefore \ \cos A&= \pm\sqrt{\frac{1+\cos 2A}{2}}\\ \end{align}[/math][br]Second Method:[br][math] \begin{align} \text{ RHS } & = \pm\sqrt{\frac{1+\cos 2A}{2}}\\ \ & = \pm\sqrt{\frac{1+(2\cos^2 A-1)}{2}}\\ \ & = \pm\sqrt{\frac{1+2\cos^2 A-1}{2}}\\ \ & = \pm\sqrt{\frac{2\cos^2 A}{2}}\\ \ & = \pm\sqrt{\cos^2 A}\\ \ & = \pm \cos A\\ \ & = \cos A\\ \ & = \text{ LHS } \\ \end{align} [/math][br][br]5. (c) Prove that: [math] \tan A = \pm \sqrt{\frac{1-\cos 2A}{1+\cos 2A }} [/math][br]Solution:[br][math] \begin{align} \text{ RHS } & = \pm\sqrt{\frac{1-\cos 2A}{1+\cos 2A}}\\ \ & = \pm\sqrt{\frac{1-(1-2\sin^2 A)}{1+(2cos^2A+1)}}\\ \ & = \pm\sqrt{\frac{1-1+2\sin^2 A}{1+2\cos^2A-1}}\\ \ & = \pm\sqrt{\frac{2\sin^2 A}{2\cos^2 A}}\\ \ & = \pm\sqrt{\tan^2 A}\\ \ & = \pm \tan A\\ \ & = \tan A\\ \ & = \text{ LHS } \\ \end{align} [/math][br][br]5. (d) Prove that: [math] \sec 2A = \frac{\cot^2 A + 1}{ \cot^2 A -1 } [/math][br]Solution:[br][math] \begin{align} \text{LHS} & = \sec 2A \\ \ & =\frac{1}{\cos 2A} \\ \ & = \frac{\cos^2 A+ \sin^2 A }{\cos^2 A -\sin^2 A}\\ [\because &\text{ Dividing both sides by } \sin^2 A]\\ \ & =\frac{\frac{\cos^2 A }{\cos^2 A}+\frac{\sin^2 A}{\cos^2 A}}{\frac{\cos^2 A }{\cos^2 A}-\frac{\sin^2 A}{\cos^2 A}}\\ \ & = \frac{\cot^2 A-1}{\cot^2 A +1}\\ \ & = \text{RHS} \end{align}[/math][br][br]6. (a) [math] \frac{\sin 2A}{1+\cos 2A } = \tan A [/math][br]Solution:[br][math] \begin{align} \text{ LHS } & = \frac{\sin 2A}{1+\cos 2A }\\ \ & = \frac{2\sin A \cos A }{1+ 2\cos^2 A -1 }\\ \ & = \frac{2 \sin A \cos A }{2\cos^2 A } \\ \ & = \frac{ \sin A }{ \cos A } \\ \ & = \tan A \\ \ & = \text { RHS } \end{align} [/math][br][br]6(b) [math] \frac{ 1 -\cos 2A }{ \sin 2A } = \tan A [/math][br]Solution:[br][math] \begin{align} \text { LHS } & = \frac{ 1 -\cos 2A }{ \sin 2A } \\ \ & = \frac{ 1 - (1 -2\sin^2 A ) } {\sin 2A } \\ \ & = \frac{ 1-1+2\sin^2 A}{2\sin A \cos A } \\ \ & = \frac{ 2\sin^2 A}{2\sin A \cos A} \\ \ & = \frac{ \sin A } { \cos A } \\ \ & = \tan A \\ \ & = \text { RHS } \\ \end{align} [/math][br][br]6. (c) [math] \frac{\sin 2A}{ 1-\cos 2A} = \cot A [/math][br]Solution:[br][math] \begin{align} \text{ LHS } & = \frac{\sin 2A}{ 1-\cos 2A}\\ \ & = \frac{2\sin A \cos A } {1-(1-2\sin^2 A)} \\ \ & = \frac{ 2\sin A \cos A}{1-1+2\sin^2 A}\\ \ & = \frac{ 2\sin A \cos A } {2\sin^2 A } \\ \ & =\frac{ \cos A}{\sin A } \\ \ & = \cot A \\ \ & = \text{ RHS } \\ \end{align} [/math][br][br]6. (d) [math] \frac{ 1-\cos 2\theta }{1+\cos 2\theta} = \tan^2 \theta [/math] [br]Solution:[br][math] \begin{align} \text{ LHS } & = \frac{ 1-\cos 2\theta }{1+\cos 2\theta} \\ \ & = \frac{ 1 - (1-2\sin^2 \theta ) }{ 1+ ( 2\cos^2 \theta - 1) } \\ \ & = \frac{ 1-1+2\sin^2 \theta }{1+2\cos^2 \theta-1} \\ \ & = \frac{ 2\sin^2 \theta} { 2\cos^2 \theta } \\ \ & = \frac{ \sin^2 \theta} { \cos^2 \theta} \\ \ & = \tan^2 \theta \\ \ & = \text{ RHS } \\ \end{align} [/math][br][br]6. (e) [math] \frac{1-\tan \alpha}{1+\tan \alpha}=\frac{1-\sin 2\alpha}{\cos 2\alpha} [/math][br]Solution:[br][math] \displaystyle \begin{align} \text{ LHS } & = \displaystyle \frac{1-\tan \alpha}{1+\tan \alpha}\\ \ & = \displaystyle \frac{ 1 - \frac{ \sin \alpha}{\cos \alpha}}{ 1+ \frac{\sin \alpha}{\cos \alpha}}\\ \ & = \frac{\frac{\cos \alpha - \sin \alpha}{\cos \alpha}}{\frac{\cos \alpha + \sin \alpha }{\cos \alpha}} \\ \ & = \frac{ \cos \alpha - \sin \alpha} { \cos \alpha + \sin \alpha } \\ \ & = \frac{ \cos \alpha - \sin \alpha} { \cos \alpha + \sin \alpha } \times \frac{ \cos \alpha - \sin \alpha} { \cos \alpha - \sin \alpha } \\ \ & = \frac{ (\cos \alpha - \sin \alpha)^2 } { \cos^2 \alpha - \sin^2 \alpha } \\ \ & = \frac{\cos^2 \alpha - 2\cos \alpha \sin \alpha + \sin^2 \alpha }{\cos 2\alpha } \\ \ & = \frac{\sin^2 \alpha + \cos^2 \alpha - 2\sin \alpha \cos \alpha }{\cos 2\alpha} \\ \ & = \frac{ 1 - \sin 2\alpha }{\cos 2\alpha }\\ \ & = \text{ RHS } \end{align} [/math][br][br]6. (f) [math] \frac{ \cos 2\theta}{1+\sin 2\theta } = \frac{ 1-\tan \theta}{1+ \tan \theta} [/math][br]Solution:[br][math] \begin{align} \text{LHS } & = \frac{ \cos 2\theta}{1+\sin 2\theta }\\ \ & = \frac{\cos^2 \theta - \sin^2 \theta }{\sin^2 \theta + \cos^2 \theta +2\sin \theta \cos \theta} \\ \ & = \frac{(\cos \theta - \sin \theta)(\cos \theta + \sin \theta)}{(\cos \theta + \sin \theta )^2} \\ \ & = \frac{\cos \theta - \sin \theta }{\cos \theta + \sin \theta } \\ \ & = \frac{\frac{\cos \theta}{\cos \theta} - \frac{ \sin \theta }{\cos \theta} }{\frac{\cos \theta}{\cos \theta} + \frac{\sin \theta}{\cos \theta} } \\ \ & = \frac{1-\tan \theta }{1+\tan \theta } \\ \ & = \text{ RHS } \\ \end{align} [/math][br][br]6. (g) [math] \frac{\sin \theta + \sin 2\theta}{1+\cos \theta + \cos 2\theta} = \tan \theta [/math][br]Solution:[br][math] \begin{align} \text{ LHS } & = \frac{\sin \theta + \sin 2\theta}{1+\cos \theta + \cos 2\theta} \\ \ & = \frac{ \sin \theta + 2\sin \theta \cos \theta }{ 1+ \cos \theta + 2\cos^2 \theta -1} \\ \ & = \frac{ \sin \theta (1+2\cos \theta)}{\cos \theta ( 1+2\cos \theta )} \\ \ & = \frac{ \sin \theta }{\cos \theta }\\ \ & = \tan \theta \\ \ & = \text { RHS } \\ \end{align} [/math][br][br]6. (h) [math] \frac{1+ \cos \beta + \cos 2\beta} {\sin \beta + \sin 2\beta } = \cot \beta [/math][br]Solution:[br][math] \begin{align} \text{ LHS } & = \frac{ 1+ \cos \beta + \cos 2\beta }{\sin \beta + \sin 2\beta}\\ \ & =\frac{1+\cos \beta + 2\cos^2 \beta-1}{\sin \beta+2\sin \beta \cos \beta }\\ \ & = \frac{\cos \beta( 1+ 2\cos \beta)}{\sin \beta(1+2\cos \beta)}\\ \ & = \frac{\cos \beta }{\sin \beta }\\ \ & = \cot \beta \\ \ & = \text{ RHS } \end{align} [/math][br][br]6. (i) [math] \frac{1-\sin 2\alpha}{\cos 2\alpha} = \frac{ 1-\tan \alpha}{1+\tan \alpha} = \tan (45^{\circ} - \alpha ) [/math][br]Solution:[br][math] \begin{align} \text{ LHS } & = \frac{1-\sin 2\alpha}{\cos 2\alpha} \\ \ & = \frac{\sin^2 \alpha + \cos^2 \alpha -2\sin \alpha \cos \alpha}{\cos^2\alpha -\sin^2 \alpha}\\ \ & =\frac{(\cos \alpha - \sin \alpha )^2}{(\cos \alpha -\sin \alpha)(\cos \alpha + \sin \alpha)} \\ \ & = \frac{\cos \alpha - \sin \alpha }{\cos \alpha + \sin \alpha }\\ \ & = \frac{\frac{\cos \alpha }{\cos \alpha}- \frac{\sin \alpha }{\cos \alpha}}{\frac{\cos \alpha}{\cos \alpha} + \frac{\sin \alpha }{\cos \alpha}}\\ \ & = \frac{1-\tan \alpha }{1+ \tan \alpha } = \text{ Mid Term } \\ \ & = \frac{ \tan 45^{\circ} - \tan \alpha } { 1+ \tan 45^{\circ} \tan \alpha } \\ \ & = \tan( 45^{\circ} - \alpha)\\ \ & = \text{ RHS } \end{align}[/math] [br][br]6. (j) [math] \tan \theta + \cot \theta = 2\text{cosec} 2\theta [/math][br]Solution:[br][math] \begin{align} \text{LHS } & = \tan \theta+ \cot \theta \\ \ & = \frac{\sin \theta }{\cos \theta}+\frac{\cos \theta}{\sin \theta}\\ \ & = \frac{\sin^2 \theta+\cos^2 \theta}{\cos \theta \sin \theta}\\ \ & = \frac{1}{\sin \theta \cos \theta}\times \frac{2}{2} \\ \ & = \frac{2}{2\sin \theta \cos \theta }\\ \ & = \frac{2}{\sin 2\theta} \\ \ & = 2 \text{ cosec } \theta \\ \ & = \text {RHS} \end{align} [/math][br][br]6. (k) [math] \text{cosec } 2A - \cot 2A = \tan A [/math][br]Solution:[br][math] \begin{align} \text{LHS } & = \text{ cosec } 2A-\cot 2A \\ \ & = \frac{1}{\sin 2A}-\frac{\cos 2A}{\sin 2A}\\ \ & =\frac{1- \cos 2A}{\sin 2A} \\ \ & = \frac{1-(1-2\sin^2 A)}{2\sin A \cos A}\\ \ & = \frac{1-1+2\sin^2 A}{2\sin A \cos A}\\ \ & =\frac{2\sin^2 A}{2\sin A \cos A}\\ \ & =\frac{\sin A}{\cos A }\\ \ & = \tan A \\ \ & = \text{ RHS }\\ \end{align}[/math][br][br]7. (a) [math] \tan(45^{\circ} + \theta) = \sec 2\theta + \tan 2\theta [/math][br]Solution:[br][math] \begin{align} \text{LHS } & = \tan (45^{\circ} + \theta) \\ \ & = \frac{\tan 45^{\circ} + \tan \theta}{1-\tan 45^{\circ} \tan \theta}\\ \ & = \frac{1+\tan \theta}{1-1\times \tan \theta }\\ \ & = \frac{1+\tan \theta}{1- \tan \theta }\\ \ & = \frac{1+\frac{\sin \theta}{\cos\theta}}{1- \frac{\sin \theta}{\cos \theta} }\\ \ & = \frac{\frac{\cos \theta + \sin \theta }{\cos \theta}}{\frac{\cos \theta - \sin \theta }{\cos \theta}}\\ \ & = \frac{\cos \theta + \sin \theta}{\cos \theta - \sin \theta }\\ \ & = \frac{\cos \theta + \sin \theta}{\cos \theta - \sin \theta } \times \frac{\cos \theta + \sin \theta}{\cos \theta + \sin \theta }\\ \ & = \frac{(\cos \theta + \sin \theta )^2 }{\cos^2 \theta - \sin^2 \theta }\\ \ & = \frac{ \cos^2 \theta + 2\cos \theta \sin \theta + \sin^2 \theta } {\cos 2\theta}\\ \ & = \frac{ \sin^2 \theta + \cos^2 \theta + 2\sin \theta \cos \theta }{ \cos 2\theta} \\ \ & = \frac{ 1+ \sin 2\theta } { \cos 2\theta} \\ \ & = \frac{ 1}{\cos 2\theta} + \frac{ \sin 2\theta}{\cos 2\theta}\\ \ & = \sec 2\theta + \tan 2\theta \\ \ & = \text{ RHS} \end{align} [/math][br][br]7. (b) [math] 1 -\sin 2A = 2 \sin^2 (45^{\circ} - A) [/math][br]Solution:[br][math] \begin{align} \text{RHS } \ & = 2\sin^2(45^{\circ}-A) \\ \ & =2\times\frac{1-\cos2(45^{\circ}-A)}{2}\\ \ & [\because \sin^2 \theta = \frac {1-\cos 2\theta}{2} ]\\ \ & = 1- \cos ( 90^{\circ} - 2A) \\ \ & = 1-\sin 2A \\ \ & = \text{ LHS }\\ \end{align} [/math][br][br]7. (c) [math] 2\cos^2 (45^{\circ} -\theta ) = 1+ \sin 2\theta [/math][br]Solution:[br][math] \begin{align} \text{ LHS } & = 2 \cos^2 (45^{\circ} -\theta)\\ \ & = 2 \times \frac{1+\cos 2(45^{\circ}-\theta)}{2}\\ \ & \left[ \because \cos^2 A = \frac{ 1+\cos 2A}{2} \right]\\ \ & = 1+\cos(90^{\circ} -2\theta)\\ \ & = 1+\sin 2\theta\\ \ & = \text{ RHS} \end{align} [/math][br][br]7. (d) [math] \cos^2 ( 45^{\circ} -A) -\sin^2 (45^{\circ} -A) = \sin 2A [/math][br]Solution:[br][math] \begin{align}\text{LHS } & = \cos^2 ( 45^{\circ} -A) -\sin^2 (45^{\circ} -A)\\ \ & = \cos 2(45^{\circ} - A) \\ \ & = \cos (90^{\circ} - 2A) \\ \ & = \sin 2A \\ \ & = \text { RHS }\end{align}[/math][br][br]7. (e) [math] \tan (A + 45^{\circ}) - \tan ( A - 45^{\circ}) = \frac{2(1+\tan^2 A)}{1-\tan^2 A} [/math][br]Solution[br][math] \begin{align}\text{LHS }\ & = \tan(A+45^{\circ}-\tan (A-45^{\circ}) \\ \ & =\frac{\tan A+\tan45^{\circ}}{1-\tan A\tan45^{\circ}}-\frac{\tan A-\tan45^{\circ}}{1+\tan A\tan45^{\circ}}\\ \ & = \frac{\tan A+1}{1-\tan A \times 1}- \frac{\tan A-1}{1+\tan A \times 1}\\ \ & =\frac{\tan A+1}{1-\tan A}-\frac{\tan A-1}{1+\tan A}\\ \ & =\frac{ (\tan A+1) (1+\tan A) -( \tan A-1)(1-\tan A)}{(1-\tan A)(1+\tan A) } \\ \ & = \frac{\tan A+\tan^2 A+1+\tan A - (\tan A -\tan^2 A -1+\tan A)}{1^2-\tan^2 A} \\ \ & =\frac{\tan A+\tan^2 A+1+\tan A- \tan A + \tan^2 A+1 -\tan A}{1-\tan^2 A}\\ \ & =\frac{2+2\tan^2 A}{1-\tan^2 A} \\ \ & =\frac{2\left(1+\tan^2A\right)}{1-\tan^2A}\\ \ & = \text{ RHS } \\ \end{align} [/math][br][br]7. (f) [math] \frac{1+\tan^2 (45^{\circ}-\theta )}{1-\tan^2 (45^{\circ}-\theta )} = \text{ cosec } 2\theta [/math][br]Solution:[br][math] \begin{align} \text{LHS } \ & = \frac{1+\tan^2 (45^{\circ}-\theta )}{1-\tan^2 (45^{\circ}-\theta )}\\ \ & = { \displaystyle \frac{1}{\frac{1-\tan^2(45^{\circ}-\theta)}{1+\tan^2(45^{\circ}-\theta)}} }\\ \ & = {\cos 2(45^{\circ}-\theta ) } \\ \ & = \frac{1}{\cos (90^{\circ} - 2\theta} ) \\ \ & = \frac{1}{\sin 2\theta } \\ \ & = \text{cosec } 2\theta \\ \ & =\text{ RHS } \end{align} [/math][br][br]8. (a) If [math] \cos\theta=\frac{1}{2}\left(a+\frac{1}{a}\right)[/math] then prove that: [math]\cos2\theta=\frac{1}{2}\left(a^2+\frac{1}{a^2}\right).[/math][br]Solution:[br][math] \begin{align} \text{LHS } &=\cos2\theta\\ \ &=2\cos^2\theta-1\\ \ &=2\left(\cos\theta\right)^2-1\\ \ &=2\left\{\frac{1}{2}\left(a+\frac{1}{a}\right)\right\}^2-1\\ \ &=2\times\frac{1}{4}\left(a+\frac{1}{a}\right)^2-1\\ \ &=\frac{1}{2}\left(a+\frac{1}{a}\right)^2-1\\ \ &=\frac{1}{2}\left(a^2+2\times a\times\frac{1}{a}+\frac{1}{a^2}\right)-1\\ \ &=\frac{1}{2}\left(a^2+\frac{1}{a^2}+2\right)-1\\ \ &=\frac{1}{2}\left(a^2+\frac{1}{a^2}\right)+\frac{1}{2}\times2-1\\ \ &=\frac{1}{2}\left(a^2+\frac{1}{a^2}\right)+1-1\\ \ &=\frac{1}{2}\left(a^2+\frac{1}{a^2}\right)\\ \ &= \text{ RHS }\\ \end{align} [/math][br][br]8. (b) If [math]\displaystyle\sin\theta=\frac{1}{2}\left(b+\frac{1}{b}\right)[/math][br] Prove that:[math]\displaystyle \cos2\theta=-\frac{1}{2}\left(b^2+\frac{1}{b^2}\right)[/math][br][math] \begin{align} \text{LHS } \ & \displaystyle =\cos2\theta\\ \ & \displaystyle=1-2\sin^2\theta\\ \ & \displaystyle =1-2\left(\sin\theta\right)^{^2}\\ \ & \displaystyle =1-2\left\{\frac{1}{2}\left(b+\frac{1}{b}\right)\right\}^2\\ \ & \displaystyle =1-2\times\frac{1}{4}\left(b+\frac{1}{b}\right)^2\\  \ & \displaystyle =1-\frac{1}{2}\left(b^2+2\times b\times\frac{1}{b}+\frac{1}{b^2}\right)\\ \ & \displaystyle =1-\frac{1}{2}\left(b^2+2+\frac{1}{b^2}\right)\\ \ & \displaystyle =1-\frac{1}{2}\left(b^2+\frac{1}{b^2}+2\right)\\ \ & \displaystyle =1-\frac{1}{2}\left(b^2+\frac{1}{b^2}\right)-\frac{1}{2}\times2\\ \ & \displaystyle =1-\frac{1}{2}\left(b^2+\frac{1}{b^2}\right)-1\\ \ & \displaystyle =-\frac{1}{2}\left(b^2+\frac{1}{b^2}\right)\\ \ & \displaystyle =\text{ RHS } \end{align} [/math][br][br]8. (c) If [math]\sin\beta=\frac{1}{2}\left(k+\frac{1}{k}\right)[/math] , show that [math] \sin3\beta=-\frac{1}{2}\left(k^3+\frac{1}{k^3}\right)[/math][br]Solution:[br][math] \begin{align} \text{LHS } \ & =\sin3\beta\\ \ & =3\sin\beta-4\sin^3\beta\\  \ & =3\times\frac{1}{2}\left(k+\frac{1}{k}\right)-4\times\left\{\frac{1}{2}\left(k+\frac{1}{k}\right)\right\}^3\\  \ & =\frac{3}{2}\left(k+\frac{1}{k}\right)-4\times\frac{1}{8}\left(k+\frac{1}{k}\right)^3\\ [br]\ & =\frac{3}{2} \left( k + \frac{1}{k} \right) - \frac{1}{2} \left(k+\frac{1}{k}\right)^3\\ [br]\ & =\frac{3}{2} \left( k + \frac{1}{k} \right) - \frac{1}{2} \left\{k^3+ \frac{1}{k^3}+3\times k\times \frac{1}{k} \left( 1+ \frac{1}{k} \right) \right\}\\ [br]\ & =\frac{3}{2} \left( k + \frac{1}{k} \right) - \frac{1}{2} \left\{k^3+ \frac{1}{k^3}+3 \left( k + \frac{1}{k} \right) \right\}\\ [br]\ & =\frac{3}{2} \left( k + \frac{1}{k} \right) - \frac{1}{2} \left(k^3+ \frac{1}{k^3}\right) - \frac{3}{2} \left( k+ \frac{1}{k} \right) \\ [br]\ & = - \frac{1}{2} \left(k^3+ \frac{1}{k^3}\right) \\ [br] \ & =\text{ RHS}\\ \end{align} [/math][br]Alternative[br][math] \begin{align} \text{LHS } \ & =\sin3\beta\\ \ & =3\sin\beta-4\sin^3\beta\\  \ & =3\times\frac{1}{2}\left(k+\frac{1}{k}\right)-4\times\left\{\frac{1}{2}\left(k+\frac{1}{k}\right)\right\}^3\\  \ & =\frac{3}{2}\left(k+\frac{1}{k}\right)-4\times\frac{1}{8}\left(k+\frac{1}{k}\right)^3\\  \ & =\frac{1}{2}\left\{3\left(k+\frac{1}{k}\right)-\left(k+\frac{1}{k}\right)^3\right\}\\   \ & =-\frac{1}{2}\left\{\left(k+\frac{1}{k}\right)^3-3\left(k+\frac{1}{k}\right)\right\}\\ \ & =-\frac{1}{2}\left\{\left(k+\frac{1}{k}\right)^3-3\times k\times\frac{1}{k}\left(a+\frac{1}{k}\right)\right\}\\ \ & =-\frac{1}{2}\left(k^3+\frac{1}{k^3}\right) \left[\because k^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\right]\\ \ & =\text{ RHS}\\ \end{align} [/math][br][br]9. (a) [math] (\cos 2A -\cos 2B)^2 + (\sin 2A + \sin 2B)^2 = 4\sin^2 (A+B) [/math][br]Solution:[br][math]\begin{align} \text{LHS } & = (\cos 2A -\cos 2B)^2 + (\sin 2A + \sin 2B)^2 \\ \ & = \cos^2 2A -2\cos 2A \cos 2B + \cos ^2 2B + \sin^2 2A +2\sin 2A \sin 2B + \sin^2 2B \\ \ & = \sin^2 2A + \cos^2 2A + \sin^2 2B+ \cos^2 2B -2(\cos 2A \cos 2B - \sin 2A \sin 2B) \\ \ & = 1+1-2\cos (2A+2B) \\ \ & = 2 -2\cos (2A+2B) \\ \ & = 2 -2\cos 2(A+B) \\ \ & = 2 - 2\{ 1-2\sin^2 (A+B) \}\\ \ & = 2 -2+4\sin^2(A+B)\\ \ & = 4\sin^2(A+B)\\ \ & = \text{ RHS } \end{align} [/math][br][br]9. (b) [math] (\sin 2A - \sin 2B)^2 + (\cos 2A + \cos 2B)^2 = 4\cos^2(A+B) [/math][br]Solution:[br][math] \begin{align} \text{LHS } & =(\sin 2A - \sin 2B)^2+(\cos 2A +\cos 2B)^2 \\ \ & = \sin^2 2A -2\sin 2A \sin 2B + \sin^2 2B +\cos^2 2A +2\cos 2A \cos 2B + \cos ^2 2B \\ \ & = \sin^2 2A + \cos^2 2A + \sin^2 2B+ \cos^2 2B + 2(\cos 2A \cos 2B - \sin 2A \sin 2B) \\ \ & = 1+1+2\cos (2A+2B) \\ \ & = 2 +2\cos (2A+2B) \\ \ & = 2 +2\cos 2(A+B) \\ \ & = 2 +2\{ 2\cos^2 (A+B)-1 \}\\ \ & = 2 +4\cos^2(A+B)-2\\ \ & = 4\cos^2(A+B)\\ \ & = \text{ RHS } \end{align}[/math][br][br]10. (a) Prove that: [math] \cos^2\theta+\sin^2\theta.\cos2\alpha=\cos^2\alpha+\sin^2\alpha.\cos2\theta[/math][br]Solution:[br][math] \begin{align} \text{ LHS} \ & =\cos^2\theta+\sin^2\theta.\cos2\alpha\\ \ & =\cos^2\theta+\sin^2\theta\left(1-2\sin^2\alpha\right)\\ \ & =\cos^2\theta+\sin^2\theta-2\sin^2\theta\sin^2\alpha\\ \ & =1-2\sin^2\theta\sin^2\alpha\\ \ & =\cos^2\alpha+\sin^2\alpha-2\sin^2\theta\sin^2\alpha\\ \ & =\cos^2\alpha+\sin^2\alpha\left(1-2\sin^2\theta\right)\\ \ & =\cos^2\alpha+\sin^2\alpha\cos2\theta\\ \ & = \text{ RHS}\\ \end{align} [/math][br][br]10. (b) [math] (1+\cos 2\theta + \sin 2\theta )^2 =4\cos^2 \theta(1+\sin 2\theta) [/math][br]Solution:[br][math] \begin{align} \text{LHS} & = (1+\cos 2\theta + \sin 2\theta )^2 =4\cos^2 \theta(1+\sin 2\theta)\\ \ & = ( 1+ 2\cos^2 \theta -1 + 2\sin \theta \cos \theta )^2\\ \ & = (2\cos^2 \theta + 2\sin \theta \cos \theta)^2 \\ \ & = \{ 2\cos \theta(\cos \theta + \sin \theta ) \}^2\\ \ & = 4\cos^2 \theta ( \cos \theta +\sin \theta)^2 \\ \ & = 4\cos^2 \theta (\cos^2 \theta + 2\cos \theta \sin \theta + \sin^2 \theta )\\ \ & = 4\cos^2 \theta ( \sin^2 \theta + \cos^2 \theta + 2\cos \theta \sin \theta )\\ \ & = 4\cos^2 \theta (1+\sin 2\theta)\\ \ & = \text { RHS} \end{align} [/math][br][br]10. (c) Prove that: [math](2\cos A+1)(2\cos A-1)\left(2\cos2A-1\right)=1+ 2\cos4A[/math][br]Solution:[br][math] \begin{align} \text{LHS} \ & =(2\cos A+1)(2\cos A-1)\left(2\cos2 A-1\right)\\ \ & =\left\{\left(2\cos A\right)^2-1^2\right\}\left(2\cos2 A-1\right)\\ \ & =\left(4\cos^2 A-1\right)\left(2\cos2 A-1\right)\\ \ & =\left(4\times\frac{1+\cos2 A}{2}-1\right)\left(2\cos2 A-1\right)\\ \ & =\left(2+2\cos2 A-1\right)\left(2\cos2 A-1\right)\\ \ & =\left(2\cos2 A+1\right)\left(2\cos2 A-1\right)\\ \ & =\left(2\cos2 A\right)^2-1^2\\ \ & =4\cos^22 A-1\\ \ & =4\times\frac{1+\cos4 A}{2}-1\\ \ & =2\left(1+\cos4 A\right)-1\\ \ & =2+2\cos4 A-1\\ \ & =1+ 2\cos4 A\\ \ & = \text{ RHS }\\ \end{align} [/math][br][br]10. (d) [math] 1+\cos 8 \theta = ( 2\cos 4\theta -1 ) (2\cos 2\theta -1)( 2\cos \theta -1) (2\cos \theta +1) [/math][br]Solution:[br][math]\begin{align} \text{RHS} \ & = (2\cos 4\theta-1)(2\cos 2\theta -1) ( 2\cos 2\theta -1)(2\cos \theta +1)\\ \ & = (2\cos 4\theta-1)(2\cos 2\theta -1)\left\{(2\cos 2\theta )^2 -1^2 \right\}\\ \ & = (2\cos 4\theta-1)(2\cos 2\theta -1)(4\cos^2\theta -1^2 )\\ \ & = (2\cos 4\theta-1)(2\cos 2\theta -1) \left( 4\times \frac{1+\cos 2\theta}{2} -1\right)\\ \ & = (2\cos 4\theta-1)(2\cos 2\theta -1) (2+2\cos 2\theta - 1)\\ \ & = (2\cos 4\theta-1)(2\cos 2\theta -1) (2\cos 2\theta +1 ) \\ \ & = (2\cos 4\theta -1 ) \{ (2\cos 2\theta)^2 -1^2 \}\\ \ & = (2\cos 4\theta -1 ) (4\cos^2 2\theta-1)\\ \ & = (2\cos 4\theta -1 )\left( 4\times \frac{1+\cos 4\theta}{2}-1 \right) \\ \ & = (2\cos 4\theta -1 ) ( 2+ 2\cos 4\theta -1 ) \\ \ & = ( 2\cos 4\theta -1 ) ( 2\cos 4\theta +1)\\ \ & = (2\cos 4\theta )^2 -1^2\\ \ & = 4\cos^2 4 \theta -1\\ \ & = 4 \times \frac{1+\cos 8 \theta}{2} -1\\ \ & = 2+2\cos 8 \theta -1\\ \ & = 1+\cos 8 \theta\\ \ & = \text{ LHS }\\ \end{align} [/math][br][br]11. (a) Prove that: [math]\cos^6\theta-\sin^6\theta=\frac{1}{4}\left(\cos^32\theta+3\cos2\theta\right)[/math][br]Solution:[br][math] \begin{align} \text{LHS } \ & =\cos^6\theta-\sin^6\theta\\ \ & =\left(\cos^2\theta\right)^3-\left(\sin^2\theta\right)^3\\ \ & =\left(\cos^2\theta-\sin^2\theta\right)\left\{\left(\cos^2\theta\right)^2+\cos^2\theta\sin^2\theta+\left(\sin^2\right)^2\right\}\\\ & =\cos2\theta\left\{\left(\cos^2\theta\right)^2+2\cos^2\theta\sin^2\theta+\left(\sin^2\right)^2-\cos^2\theta\sin^2\theta\right\}\\ \ & =\cos2\theta\left\{\left(\cos^2\theta+\sin^2\theta\right)^2-\frac{1}{4}\left(2\sin\theta\cos\theta\right)^2\right\}\\ \ & =\cos2\theta\left\{\left(1\right)^2-\frac{1}{4}\left(\sin2\theta\right)^2\right\}\\ \ & =\cos2\theta\left\{1-\frac{1}{4}\sin^22\theta\right\}\\ \ & =\cos2\theta\left\{\frac{4-\sin^22\theta}{4}\right\}\\ \ & =\cos2\theta\left\{\frac{4-\left(1-\cos^22\theta\right)}{4}\right\}\\ \ & =\cos2\theta\left(\frac{4-1+\cos^22\theta}{4}\right)\\ \ & =\cos2\theta\left(\frac{3+\cos^22\theta}{4}\right)\\ \ & =\frac{3\cos2\theta+\cos^32\theta}{4}\\ \ & =\frac{1}{4}\left(\cos^32\theta+3\cos2\theta\right)\\ \ & = \text{ RHS }\\ \end{align} [/math][br] [br]11. (b) Prove that: [math]\cos^6\theta+\sin^6\theta=\frac{1}{8}\left(5+3\cos4\theta\right)[/math][br]Solution:[br][math] \begin{align} \text{LHS } \ & =\cos^6\theta+\sin^6\theta\\ \ & =\left(\cos^2 \theta \right)^3+\left(\sin^2\theta \right)^3\\ \ & =\left(\sin^2\theta+\cos^2\theta\right)\left\{\left(\cos^2\right)^2-\cos^2\theta\sin^2\theta+\left(\sin^2\theta\right)^2\right\}\\ \ & =\left(1\right)\left\{\left(\cos^2\theta\right)^2+2\cos^2\theta\sin^2\theta+\left(\sin^2\theta\right)^2-3\cos^2\theta\sin^2\theta\right\}\\ \ & =\left\{\left(\cos^2\theta+\sin^2\theta\right)^2-\frac{3}{4}\left(2\cos\theta\sin\theta\right)^2\right\}\\ \ & =\left(1\right)^2-\frac{3}{4}\left(\sin2\theta\right)^2\\ \ & =1-\frac{3}{4}\sin^22\theta\\ \ & =1-\frac{3}{4}\times\frac{1-\cos4\theta}{2}\\ \ & =\frac{8-3+3\cos4\theta}{8}\\ \ & =\frac{5+3\cos4\theta}{8}\\ \ & =\frac{1}{8}\left(5+3\cos4\theta\right)\\ \ & = \text{ RHS}\\ \end{align} [/math][br][br]11. (c) Prove that: [math]\cos^8\theta+\sin^8\theta=1-\sin^22\theta+\frac{1}{8}\sin^42\theta[/math][br]Solution:[br][math]\begin{align} \text{LHS } \ & =\cos^8\theta+\sin^8\theta\\ \ & =\left(\cos^4\theta\right)^2+\left(\sin^4\theta\right)^2\\ \ & =\left(\cos^4\theta-\sin^4\theta\right)^2+2\cos^4\theta\sin^4\theta\\ \ & =\left\{\left(\cos^2\theta\right)^2-\left(\sin^2\theta\right)^2\right\}^2+\frac{2^4}{2^3}\cos^4\theta\sin^4\theta\\ \ & =\left\{\left(\cos^2\theta+\sin^2\theta\right)\left(\cos^2\theta-\sin^2\theta\right)\right\}^2 +\frac{1}{8}\left(2\sin\theta\cos\theta\right)^4\\ \ & =\left\{1\times\cos2\theta\right\}^2+\frac{1}{8}\left(\sin2\theta\right)^4\\ \ & =\cos^22\theta+\frac{1}{8}\sin^42\theta\\ \ & =1-\sin^22\theta+\frac{1}{8}\sin^42\theta\\ \ & = \text{ RHS} \end{align} [/math][br][br]11. (d) Prove that: [math]\frac{1}{\sin10^\circ}-\frac{\sqrt{3}}{\cos10^\circ}[/math][br]Solution:[br][math]\begin{align} \text{LHS } \ & =\frac{1}{\sin10^\circ}-\frac{\sqrt{3}}{\cos10^\circ}\\ \ & =\frac{\cos10^\circ-\sqrt{3}\sin10^\circ}{\sin10^\circ\cos10^\circ}\\ \ & =\frac{\frac{1}{2}\cos10^\circ-\frac{\sqrt{3}}{2}\sin10^\circ}{\frac{1}{2}\sin10^\circ\cos10^\circ}\\ \ & =\frac{\sin30^\circ\cos10^\circ-\cos30^\circ\sin10^\circ}{\frac{1}{2}\sin10^\circ\cos10^\circ}\\ \ & =\frac{\sin\left(30^\circ-10^\circ\right)}{\frac{1}{2}\sin10^\circ\cos10^\circ}\\ \ & =\frac{\sin20^\circ}{\frac{1}{2}\sin10^\circ\cos10^\circ}\\ \ & =\frac{2\sin10^\circ\cos10^\circ}{\frac{1}{2}\sin10^\circ\cos10^\circ}\\ \ & =\frac{2}{\frac{1}{2}}\\ \ & =2\times2\\ \ & =4\\ \ & = \text{ RHS}\\ \end{align} [/math] [br][br]11. (e) Prove that: [math]\sqrt{3}\text{cosec }40^{\circ}+\sec40^{\circ}=4[/math][br]Solution:[br][math] \begin{align} \text{LHS } \ & =\sqrt{3}\text{cosec }40^\circ+\sec40^\circ\\ \ & =\frac{\sqrt{3}}{\sin40^\circ}+\frac{1}{\cos40^\circ}\\ \ & =\frac{\sqrt{3}\cos40^\circ+\sin40^\circ}{\sin40^\circ\cos40^\circ}\\ \ & =\frac{\frac{\sqrt{3}}{2}\cos40^\circ+\frac{1}{2}\sin40^\circ}{\frac{1}{2}\sin40^\circ\cos40^\circ}\\ \ & =\frac{\sin60^\circ\cos40^\circ+\cos60^\circ\sin60^\circ}{\frac{1}{2}\sin40^\circ\cos40^\circ}\\ \ & =\frac{\sin100^\circ}{\frac{1}{2}\sin40^\circ\cos40^\circ}\\ \ & =\frac{\sin\left(180^\circ-80^\circ\right)}{\frac{1}{2}\sin40^\circ\cos40^\circ}\\ \ & =\frac{\sin80^\circ}{\frac{1}{2}\sin40^\circ\cos40^\circ}\\ \ & =\frac{2\sin40^\circ\cos40^\circ}{\frac{1}{2}\sin40^\circ\cos40^\circ}\\ \ & =2\times2\\ \ & =4\\ \ & = \text{ RHS } \end{align} [/math][br][br]11. (f) Prove that:[math]\sqrt{3}\text{cosec }20^{\circ}-\sec20^{\circ}=4[/math][br]Solution:[br][math] \begin{align} \text{ LHS } = \ & =\sqrt{3}\text{cosec }20^{\circ}-\sec20^{\circ}\\ \ & =\frac{\sqrt{3}}{\sin20^\circ}-\frac{1}{\cos20^\circ}\\ \ & =\frac{\sqrt{3}\cos20^\circ-\sin20^\circ}{\sin20^\circ\cos20^\circ}\\ \ & =\frac{\frac{\sqrt{3}}{2}\cos20^\circ-\frac{1}{2}\sin20^\circ}{\frac{1}{2}\sin20^\circ\cos20^\circ}\\ \ & =\frac{\sin60^\circ\cos20^\circ-\cos60^\circ\sin20^\circ}{\frac{1}{2}\sin20^\circ\cos20^\circ}\\ \ & =\frac{\sin\left(60^\circ-20^\circ\right)}{\frac{1}{2}\sin20^\circ\cos20^\circ}\\ \ & =\frac{\sin40^\circ}{\frac{1}{2}\sin20^\circ\cos20^\circ}\\ \ & =\frac{2\sin20^\circ\cos20^\circ}{\frac{1}{2}\sin20^\circ\cos20^\circ}\\ \ & =\frac{2}{\frac{1}{2}}\\ \ & =4\\ \ & = \text{ RHS } \end{align} [/math] [br][br]12. (a) [math] \frac{1}{\sin 2A} + \frac{ \cos 4A}{\sin 4A} = \cot A - \text{cosec } 4A [/math][br]Solution:[br][math]\begin{align} \text{LHS } & = \frac{1}{\sin 2A} + \frac{ \cos 4A}{\sin 4A} \\ \ & = \frac{1}{\sin 2A} + \frac{ 2\cos^2 2A -1}{2\sin 2A \cos 2A} \\ \ & = \frac{2\cos 2A + 2\cos^2 2A -1 }{2\sin 2A \cos 2A} \\ \ & = \frac{ 2\cos 2A(1+\cos 2A) - 1}{2\sin 2A \cos 2A } \\ \ & = \frac{2\cos 2A (1+\cos 2A}{2\sin 2A \cos 2A} - \frac{1}{2\sin 2A \cos 2 A }\\ \ & = \frac{ 1+\cos 2A}{\sin 2A} - \frac{1}{\sin 4A} \\ \ & = \frac{ 1+ 2\cos^2 A -1}{2\sin A \cos A} - \text{cosec } 4A\\ \ & = \frac{2\cos^2 A }{2\sin A \cos A} -\text{cosec } 4A\\ \ & = \frac{ \cos A } {\sin A} -\text{cosec } 4A\\ \ & = \cot A - \text{cosec } 4A\\ \ & = \text{ RHS } \\ \end{align} [/math][br][br]12. (b)[math] \cot 8A +\text{cosec } 4A = \cot 2A - \text{cosec }8A [/math][br]Soluion:[br][math] \begin{align} \text{LHS } & = \cot 8A +\text{cosec } 4A\\[br]\ & = \frac{\cos 8A}{\sin 8A}+\frac{1}{\sin 4A}\\ [br]\ & = \frac{2\cos^2 4A-1 }{2\sin 4A \cos 4A}+\frac{1}{\sin 4A}\\ [br]\ & = \frac{2\cos^2 4A-1+2\cos 4A}{2\sin 4A \cos 4A}\\[br]\ & = \frac{2\cos^2 4A+2\cos 4A-1}{2\sin 4A \cos 4A}\\ [br]\ & = \frac{2\cos 4A(\cos 4A+1)-1}{2\sin 4A \cos 4A}\\ [br]\ & = \frac{2\cos 4A(\cos 4A+1)}{2\sin 4A \cos 4A} -\frac{1}{2\sin 4A \cos 4A}\\[br]\ & = \frac{\cos 4A+1}{\sin 4A } -\frac{1}{\sin 8A}\\[br]\ & = \frac{2\cos^2 2A-1+1}{2\sin 2A \cos 2A } -\text{cosec }{8A}\\[br]\ & = \frac{2\cos^2 2A}{2\sin 2A \cos 2A } -\text{cosec }{8A}\\ [br]\ & = \frac{\cos 2A}{\sin 2A } -\text{cosec }{8A}\\ [br]\ & = \cot 2A -\text{cosec }{8A}\\[br]\ & =\text{RHS} \end{align} [/math][br][br]12. (c) Prove that: [math] \frac{\sec4\theta-1}{\sec2\theta-1}=\tan4\theta\cot\theta [/math][br]Solution:[br][math]\begin{align}\text{LHS} & =\frac{\sec4\theta-1}{\sec2\theta-1} \\ & = \dfrac{\dfrac{1}{\cos4\theta}-1}{\dfrac{1}{\cos2\theta}-1} \\  & = \dfrac{\dfrac{1-\cos4\theta}{\cos4\theta}}{\dfrac{1-\cos2\theta}{\cos2\theta}} \\ & =\frac{1-\cos4\theta}{\cos4\theta}\times\frac{\cos2\theta}{1-\cos2\theta} \\  & =\frac{1-\left(1-2\sin^22\theta\right)}{\cos4\theta}\times\frac{\cos2\theta}{1-\left(1-2\sin^2\theta\right)} \\  & =\frac{2\sin^22\theta}{\cos4\theta}\times\frac{\cos2\theta}{2\sin^2\theta} \\  & =\frac{2\sin2\theta\cos2\theta}{\cos4\theta}\times\frac{\sin2\theta}{2\sin^2\theta} \\  & =\frac{\sin4\theta}{\cos4\theta}\times\frac{2\sin\theta\cos\theta}{2\sin^2\theta} \\  & =\tan4\theta\times\frac{\cos\theta}{\sin\theta} \\  & =\tan4\theta.\cot\theta \\  & = \text{ RHS} \end{align}[/math][br][br]12. (d) Prove that: [math]\displaystyle \frac{\sec8A-1}{\sec4A-1}=\frac{\tan8A}{\tan2A} [/math][br]Solution:[br][math] \begin{align}\text{LHS } & =\frac{\sec8A-1}{\sec4A-1}\\ & = \dfrac{\dfrac{1}{\cos8A}-1}{\dfrac{1}{\cos4A}-1}\\  & = \dfrac{\dfrac{1-\cos8A}{\cos8A}}{\dfrac{1-\cos4A}{\cos4A}}\\  & =\frac{1-\cos8A}{\cos8A}\times\frac{\cos4A}{1-\cos4A}\\  & =\frac{1-\left(1-2\sin^24A\right)}{\cos8A}\times\frac{\cos4A}{1-\left(1-2\sin^2 2A\right)}\\  & =\frac{2\sin^24A}{\cos8A}\times\frac{\cos4A}{2\sin^2 2A}\\  & =\frac{2\sin4A\cos4A}{\cos8A}\times\frac{\sin4A}{2\sin^2 2A}\\  & =\frac{\sin8A}{\cos8A}\times\frac{2\sin2A\cos2A}{2\sin^2 2A}\\  \ & =\tan8A\times\frac{\cos2A}{\sin2A}\\  & =\tan8A.\cot2A\\ & = \tan 8A \times \frac{1}{\tan 2A}\\ & = \frac{\tan 8A}{\tan 2A} \\  & = \text{ RHS} \end{align} [/math] [br][br]12. (e) Prove that: [math] \tan\theta+2\tan2\theta+4\tan4\theta+8\cot8\theta=\cot\theta [/math][br]Solution:[br][math] \begin{align} \text{LHS } &=\tan\theta+2\tan2\theta+4\tan4\theta+8\cot8\theta\\ \ &=\tan\theta+2\tan2\theta+4\tan4\theta+\frac{8}{\tan8\theta}\\ \ &=\tan\theta+2\tan2\theta+4\tan4\theta+\frac{8}{\frac{2\tan4\theta}{1-\tan^24\theta}}\\ \ &=\tan\theta+2\tan2\theta+4\tan4\theta+\frac{8\left(1-\tan^24\theta\right)}{2\tan4\theta}\\ \ &=\tan\theta+2\tan2\theta+4\tan4\theta+\frac{4\left(1-\tan^24\theta\right)}{\tan4\theta}\\ \ &=\tan\theta+2\tan2\theta+\frac{4\tan^24\theta+4-4\tan^24\theta}{\tan4\theta}\\ \ &=\tan\theta+2\tan2\theta+\frac{4}{\tan4\theta}\\ \ &=\tan\theta+2\tan2\theta+\frac{4}{\frac{2\tan2\theta}{1-\tan^22\theta}}\\ \ &=\tan\theta+2\tan2\theta+\frac{4\left(1-\tan^22\theta\right)}{2\tan2\theta}\\ \ &=\tan\theta+2\tan2\theta+\frac{2\left(1-\tan^22\theta\right)}{\tan2\theta}\\ \ &=\tan\theta+2\tan2\theta+\frac{2-2\tan^22\theta}{\tan2\theta}\\ \ &=\tan\theta+\frac{2\tan^22\theta+2-2\tan^22\theta}{\tan2\theta}\\ \ &=\tan\theta+\frac{2}{\tan2\theta}\\ \ &=\tan\theta+\frac{2}{\frac{2\tan\theta}{1-\tan^2\theta}}\\ \ &=\tan\theta+\frac{2\left(1-\tan^2\theta\right)}{2\tan\theta}\\ \ &=\tan\theta+\frac{1-\tan^2\theta}{\tan\theta}\\ \ &=\frac{\tan^2\theta+1-\tan^2\theta}{\tan\theta}\\ \ &=\frac{1}{\tan\theta}\\ \ &=\cot\theta\\ \ &=\text{ RHS} \end{align} [/math][br][br]13. (a) Prove that: [br][math] 4\left(\cos^310^\circ+\sin^320^\circ\right)=3\left(\cos10^\circ+\sin20^\circ\right) [/math][br]Solution:[br][math] \begin{align} \text{LHS } \ & =4\left(\cos^310^\circ+\sin^320^\circ\right)\\ \ & =4\cos^310^\circ+4\sin^320^\circ\\ \ & =3\cos10^\circ+\cos3\left(10^\circ\right)+3\sin20^\circ-\sin3\left(20^\circ\right)\\ \ & =3\cos10^\circ+\cos30^\circ+3\sin20^\circ-\sin60^\circ\\ \ & =3\cos10^\circ+\frac{\sqrt{3}}{2}+3\sin20^\circ-\frac{\sqrt{3}}{2}\\ \ & =3\cos10^\circ+3\cos20^\circ\\ \ & =3\left(\cos10^\circ+\cos20^\circ\right)\\ \ & =\text{ RHS } \end{align} [/math][br] [br]13. (b) Prove that: [math] \sin^3\theta\cos3\theta+\cos^3\theta\sin3\theta=\frac{3}{4}\sin4\theta [/math][br]Solution:[br][math]\begin{align}\text{LHS } \ & =\sin^3\theta\cos3\theta+\cos^3\theta\sin3\theta\\ \ & =\frac{3\sin\theta-\sin3\theta}{4}\times\cos3\theta+\frac{3\cos\theta+\cos3\theta}{4}\times\sin3\theta\\ \ & =\frac{3\cos3\theta\sin\theta-\sin3\theta\cos3\theta}{4}+\frac{3\sin3\theta\cos\theta+\sin3\theta\cos3\theta}{4}\\ \ & =\frac{3\cos3\theta\sin\theta-\sin3\theta\cos3\theta+3\sin3\theta\cos\theta+\sin3\theta\cos3\theta}{4}\\ \ & =\frac{3\left(\cos3\theta\sin\theta+\sin3\theta\cos\theta\right)}{4}\\ \ & =\frac{3\sin\left(3\theta+\theta\right)}{4}\\ \ & =\frac{3}{4}\sin4\theta\\ \ & =\text{ RHS } \end{align} [/math][br][br]13. (c) Prove that:[math] \cos^3\theta\cos3\theta+\sin^3\theta\sin3A=\cos^32\theta[/math][br]Solution:[br][math] \begin{align} \text{LHS } \ & =\cos^3\theta.\cos3\theta+\sin^3\theta.\sin3\theta\\ \ & =\frac{3\cos\theta+\cos3\theta}{4}\times\cos3\theta+\frac{3\sin\theta-\sin3\theta}{4}\times\sin3\theta\\ \ & =\frac{3\cos3\theta\cos\theta+\cos^23\theta}{4}+\frac{3\sin3\theta\sin\theta-\sin^23\theta}{4}\\ \ & =\frac{3\cos3\theta\cos\theta+\cos^23\theta+3\sin3\theta\sin\theta-\sin^23\theta}{4}\\ \ & =\frac{3\left(\cos3\theta\cos\theta+\sin3\theta\sin\theta\right)+\left(\cos^23\theta-\sin^23\theta\right)}{4}\\ \ & =\frac{3\cos\left(3\theta-\theta\right)+\cos2\left(3\theta\right)}{4}\\ \ & =\frac{3\cos\left(3\theta-\theta\right)+\cos6\theta}{4}\\ \ & =\frac{3\cos2\theta+\cos3\left(2\theta\right)}{4}\\ \ & =\frac{3\cos2\theta+4\cos^3\theta-3\cos\theta}{4}\\ \ & =\frac{4\cos^3\theta}{4}\\ \ & =\cos^3\theta\\ \ & = \text{ RHS} \end{align} [/math][br][br]13. (d) Prove that: [math]\displaystyle \tan A + \tan \left(\frac{\pi^c}{3} \right) - \tan \left(\frac{\pi^c}{3} \right) [/math][br]Solution:[br][math] \begin{align}\text{ LHS} & =\tan A + \tan\left(\frac{\pi^c}{3}+A\right)-\tan \left(\frac{\pi^c}{3}-A\right)\\ \ &=\tan A + \tan\left(60^{\circ}+A\right)-\tan \left(60^{\circ}-A\right)\\ \ & = \tan A + \frac{\tan60^{\circ}+\tan A}{1-\tan 60^{\circ}\tan A} - \frac{\tan60^{\circ}-\tan A}{1+\tan 60^{\circ}\tan A}\\ \ & = \tan A+ \frac{\sqrt{3}+\tan A}{1-\sqrt{3}\tan A}- \frac{\sqrt{3}-\tan A}{1+\sqrt{3}\tan A}\\ \ & = \tan A+ \frac{(\sqrt{3}+\tan A)(1+\sqrt{3}\tan A)-(\sqrt{3}-\tan A)(1-\sqrt{3}\tan A)}{(1-\sqrt{3}\tan A)(1+\sqrt{3}\tan A)}\\ \ & = \tan A+\frac{\sqrt{3}+3\tan A+\tan A+\sqrt{3}\tan^2 A-(\sqrt{3}-3\tan A-\tan A+\sqrt{3}\tan^2 A)}{1^2 -(\sqrt{3}\tan A)^2 } \\ \ & = \tan A + \frac{\sqrt{3}+3\tan A+\tan A+\sqrt{3}\tan^2 A-\sqrt{3}+3\tan A+\tan A-\sqrt{3}\tan^2 A}{1-3\tan^2 A}\\ \ & = \tan A +\frac{8\tan A}{1-3\tan^2 A}\\ \ & = \frac{\tan A(1-3\tan^2 A)+8\tan A}{1-3\tan^2 A}\\ \ & = \frac{\tan A -3\tan^3 A+ 8 \tan A}{1-3\tan^2 A}\\ \ & =\frac{9\tan A -3\tan^3 A}{1-3\tan^2 A}\\ \ & =3\left(\frac{3\tan A -\tan^3 A}{1-3\tan^2 A}\right)\\ \ & = 3\tan 3A \\ \ & = \text{ RHS} \end{align} [/math][br][br]14 (i) If [math] 2 \tan A = 3\tan B [/math] prove that [math] \tan( A+ B)=\frac{5\sin2 B}{5\cos2 B-1} [/math][br]Solution:[br]Given,[br][math] \begin{align} 2\tan A & =3\tan B \\ or, \tan A & =\frac{3\tan B}{2} \end{align} [/math][br] Now,[br][math]\begin{align}\text{LHS } \ & =\tan\left( A+ B\right)\\ \ & =\frac{\tan A+\tan B}{1-\tan A\tan B}\\ \ & =\frac{\frac{3\tan B}{2}+\tan B}{1-\frac{3\tan B}{2}\times\tan B}\\ \ & =\frac{\frac{3\tan B+2\tan B}{2}}{\frac{2-3\tan^2 B}{2}}\\ \ & =\frac{5\tan B}{2-3\tan^2 B}\\ \ & =\frac{5\frac{\sin B}{\cos B}}{2-3\times\frac{\sin^2 B}{\cos^2 B}}\\ \ & =\frac{5\frac{\sin B}{\cos B}}{\frac{2\cos^2 B-3\sin^2 B}{\cos^2 B}}\\ \ & =\frac{5\sin B}{\cos B}\times\frac{\cos^2 B}{2\cos^2 B-3\sin^2 B}\\ \ & =\frac{5\sin B\cos B}{2\cos^2 B-3\sin^2 B}\times\frac{2}{2}\\ \ & =\frac{10\sin B\cos B}{4\cos^2 B-6\sin^2 B}\\ \ & =\frac{5\left(2\sin B\cos B\right)}{4\times\frac{1+\cos2 B}{2}-6\times\frac{1-\cos2 B}{2}}\\ \ & =\frac{5\sin2 B}{2+2\cos2 B-3+3\cos2 B}\\ \ & =\frac{5\sin2 B}{5\cos2 B-1}\\ \ & = \text{ RHS} \end{align} [/math] [br][br]14 (ii) [math] 2 \tan A = 3\tan B [/math] prove that: [math] \tan ( A - B ) = \frac {\sin 2 B }{5-\cos 2 B} [/math][br]Solution:[br]Given,[br][math] \begin{align}2\tan A &=3\tan B \\ \tan A & =\frac{3\tan B}{2} \end{align} [/math][br][math] \begin{align} \text{LHS } \ &=\tan\left( A- B\right) \\ \ &=\frac{\tan A-\tan B}{1+\tan A\tan B} \\ \ &=\frac{\frac{3\tan B}{2}-\tan B}{1+\frac{3\tan B}{2}\times\tan B} \\ \ &=\frac{\frac{3\tan B-2\tan B}{2}}{\frac{2-3\tan^2 B}{2}} \\ \ &=\frac{\tan B}{2+3\tan^2 B} \\ \ &=\frac{\frac{\sin B}{\cos B}}{2+3\times\frac{\sin^2 B}{\cos^2 B}} \\ \ &=\frac{\frac{\sin B}{\cos B}}{\frac{2\cos^2 B+3\sin^2 B}{\cos^2 B}} \\ \ &=\frac{\sin B}{\cos B}\times\frac{\cos^2 B}{2\cos^2 B+3\sin^2 B} \\ \ &=\frac{\sin B\cos B}{2\cos^2 B+3\sin^2 B}\times\frac{2}{2} \\ \ &=\frac{2\sin B\cos B}{4\cos^2 B+6\sin^2 B} \\ \ &=\frac{\sin2 B}{4\times\frac{1+\cos2 B}{2}+6\times\frac{1-\cos2 B}{2}} \\ \ &=\frac{\sin2 B}{2+2\cos2 B+3-3\sin2 B} \\ \ &=\frac{\sin2 B}{5-\cos2 B} \\ \ &= \text{ RHS} \end{align} [/math][br][br]15. (a) Prove that: [math] \sin^4 A=\frac{1}{8}\left(3-4\cos2 A+\cos4 A\right) [/math][br]Solution:[br][math] \begin{align} \text{LHS }  \ & =\sin^4 A \\  \ & =\left(\sin^2 A\right)^2 \\  \ & =\left(\frac{1-\cos2 A}{2}\right)^2 \\  \ & =\frac{1}{4}\left(1-\cos2 A\right)^2 \\  \ & =\frac{1}{4}\left(1^2-2\times1\times\cos2 A+\cos^22 A\right) \\  \ & =\frac{1}{4}\left(1-2\cos2 A+\frac{1+\cos4 A}{2}\right) \\  \ & =\frac{1}{4}\left(\frac{2-4\cos2 A+1+\cos4 A}{2}\right) \\  \ & =\frac{3-4\cos2 A+\cos4 A}{8} \\  \ & =\frac{1}{8}(3-4\cos2 A+\cos4 A) \\  \ & = \text{ RHS} \end{align} [/math][br][br]15. (b) Prove that: [math] \cos^4 A=\frac{1}{8}\left(3+4\cos2 A+\cos4 A\right)[/math][br]Solution:[br][math] \begin{align}\text{LHS}  \ &=\cos^4 A \\ \ &=\left(\cos^2 A\right)^2 \\ \ &=\left(\frac{1+\cos2 A}{2}\right)^2 \\  \ &=\frac{1}{4}\left(1+\cos2 A\right)^2 \\ \ &=\frac{1}{4}\left(1^2+2\times1\times\cos2 A+\cos^22 A\right) \\  \ &=\frac{1}{4}\left(1+2\cos2 A+\frac{1+\cos4 A}{2}\right) \\  \ &=\frac{1}{4}\left(\frac{2+4\cos2 A+1+\cos4 A}{2}\right) \\ \ &=\frac{3+4\cos2 A+\cos4 A}{8} \\ \ &= \frac{3}{8}+ \frac{4\cos 2A }{8} + \frac{\cos 4A}{8} \\ \ &= \frac{3}{8}+ \frac{1}{2}\cos 2A + \frac{1}{8}\cos 4A \\  \ &= \text{ RHS} \end{align}[/math][br][br]15. (c) Prove that: [math] \sin5\theta=16\sin^5\theta-20\sin^3\theta+5\sin \theta [/math][br]Solution:[br][math] \begin{align} \text{LHS } \ &=\sin5\theta \\ \ &=\sin\left(3\theta+2\theta\right) \\ \ &=\sin3\theta\cos2\theta+\cos3\theta\sin2\theta \\ \ &=\left(3\sin \theta-4\sin^3\theta\right)\cos2\theta+\left(4\cos^3\theta-3\cos \theta\right)\sin2\theta \\ \ &=3\sin \theta\cos2\theta-4\sin^3\theta\cos2\theta+4\cos^3\theta\sin2\theta-3\cos \theta\sin2\theta \\ \ &=3\sin \theta\left(1-2\sin^2\theta\right)-4\sin^3\theta\left(1-2\sin^2\theta\right) \\ \ &\ \ \ +4\cos^3\theta\left(2\sin \theta\cos \theta\right)-3\cos \theta\left(2\sin \theta\cos \theta\right) \\ \ &=3\sin \theta-6\sin^3\theta-4\sin^3\theta+8\sin^5\theta \\ \ &\ \ \ +8\sin \theta\cos^4\theta-6\sin \theta\cos^2\theta \\ \ &=3\sin \theta-10\sin^3\theta+8\sin^5\theta \\ \ &\ \ \ +8\sin \theta\left(\cos^2\theta\right)^2-6\sin \theta\left(1-\sin^2\theta\right) \\ \ &=3\sin \theta-10\sin^3\theta+8\sin^5\theta+8\sin \theta\left(1-\sin^2\theta\right)^2-6\sin \theta+6\sin^3\theta \\ \ &=8\sin^5\theta-4\sin^3\theta-3\sin \theta+8\sin \theta\left(1-2\sin^2\theta+\sin^4\theta\right) \\ \ &=8\sin^5\theta-4\sin^3\theta-3\sin \theta+8\sin \theta-16\sin^3\theta+8\sin^5\theta \\ \ &=16\sin^5\theta-20\sin^3\theta+5\sin \theta \\ \ &= \text{ RHS} \end{align} [/math][br][br]15 (d) Prove that: [math] \cos5A=16\cos^5A-20\cos^3A+5\cos A [/math][br]Solution:[br][math] \begin{align} \text{LHS } \ & =\cos5A \\ \ & =\cos\left(3A+2A\right) \\ \ & =\cos3A\cos2A-\sin3A\sin2A \\ \ & =\left(4\cos^3A-3\cos A\right)\cos2A \\ \ &\ \ \ \ -\left(3\sin A-4\sin^3A\right)\sin2A \\ \ & =4\cos^3A\cos2A-3\cos A\cos2A \\ \ & \ \ \ \ -3\text{sinA}\sin2A+4\sin^3A\sin2A \\ \ & =4\cos^3A\left(2\cos^2A-1\right)-3\cos A\left(2\cos^2A-1\right) \\ \ &\ \ \ \ -3\sin A\left(2\sin A\cos A\right)+4\sin^3A\left(2\sin A\cos A\right) \\ \ & =8\cos^5A-4\cos^3A-6\cos^3A+3\cos A \\ \ & \ \ \ \ -6\sin^2A\cos A+8\sin^4A\cos A \\ \ & =8\cos^5A-10\cos^3A+3\cos A \\ \ & \ \ \ \ -6\left(1-\cos^2A\right)\cos A+8\left(\sin^2A\right)^2\cos A \\ \ & =8\cos^5A-10\cos^3A+3\cos A \\ \ & \ \ \ \ -6\cos A+6\cos^3A+\cdot8\left(1-\cos^2A\right)^2\cos A \\ \ & =8\cos^5A-4\cos^3A-3\cos A \\ \ & \ \ \ \ +8\left(1-2\cos^2A+\cos^4A\right)\cos A \\ \ & =8\cos^5A-4\cos^3A-3\cos A \\ \ & \ \ \ \ +8\cos A-16\cos^3A+8\cos^5A \\ \ & =16\cos^5A-20\cos^3A+5\cos A \\ \ & = \text{ RHS} \end{align} [/math][br][br]16. With the help of multiple angles relation of Sine and Cosine, find the value of [math]\sin18^{\circ}, \sin36^{\circ} [/math] and [math] \sin54^{\circ}[/math]. By using these values, find the values of [math]\cos18^{\circ}, \cos36^{\circ} [/math] and [math]\cos54^{\circ}[/math]. Also, find the value of [math]\tan18^{\circ}, \tan36^{\circ}[/math] and [math]\tan54^{\circ}[/math] . Share your result to your friend and prepare combine report.[br][b]Solution:[/b][br][math] \begin{align} \text{ Let, } & \theta = 18^{\circ} \\ or, & \ 5\theta = 5\times 18^{\circ} \\ or, & \ 2\theta + 3\theta = 90^{\circ} \\ or, & \ 3\theta = 90^{\circ} - 2\theta \\ or, & \ \cos 3\theta = \cos (90^{\circ} - 2\theta )\\ or, & \ 4\cos^3\theta -3\cos \theta = \sin 2\theta \\ or, & \ \cos \theta [4\cos^2 \theta - 3 ] = 2\sin \theta \cos \theta \\ or, & \ 4(1-\sin^2 \theta ) -3 = 2\sin \theta \\ or, & \ 4 -4\sin^2 \theta -3 -2\sin \theta =0 \\ or, & \ -4\sin^2 \theta -2\sin \theta +1 = 0 \\ or, & \ -(4\sin^2 \theta +2\sin \theta -1) =0 \\ or, & \ 4\sin^2 \theta +2\sin \theta -1=0 \end{align} [/math] [br]Now, comparing with [math] ax^2+bx+c=0 [/math], we get[br] [math] a=4, b= 2, c= -1, x = \sin \theta [/math][br]Now,[br][math] \begin{align} \sin \theta & = \frac{-b\pm \sqrt{b^2 - 4ac}}{2a} \\ \ & =\frac{-2\pm \sqrt{(2)^2 -4 \times 4 \times (-1)}}{2\times 4 } \\ \ & = \frac{-2\pm \sqrt{4+16}}{8} \\ \ & = \frac{-2\pm\sqrt{20}}{8} \\ \ & = \frac{-2\pm 2\sqrt{5}}{8} \\ \ & = \frac{2(-1\pm \sqrt{5})}{8}\\ \ & =\frac{-1\pm\sqrt{5}}{4} \end{align} [/math][br]Since [math] \sin 18^{\circ} [/math] is positive,[br][math] \therefore \sin 18^{\circ} = \frac{-1+\sqrt{5}}{4}=\frac{\sqrt{5}-1}{4} [/math] [br]Now,[br][math] \begin{align} \cos 18^{\circ} &=\sqrt{1-\sin^2 18^{\circ}}\\ \ & = \sqrt{1-\left(\frac{\sqrt{5}-1}{4}\right)^2}\\ \ & = \sqrt{1-\frac{\left\{(\sqrt{5})^2-2\times \sqrt{5}\times 1+1^2 \right\}^2}{16}}\\ \ & = \sqrt{\frac{16-(5-2\sqrt{5}+1)}{16}}\\ \ & = \sqrt{\frac{16-5+2\sqrt{5}-1}{16}}\\ \ & = \sqrt{\frac{10+2\sqrt{5}}{16}}\\ \ & = \frac{\sqrt{10+2\sqrt{5}}}{4}\\ \therefore \cos 18^{\circ}& = \frac{\sqrt{10+2\sqrt{5}}}{4} \end{align} [/math][br]Now,[br][math] \begin{align} \tan 18^{\circ}& =\frac{\sin 18^{\circ}}{\cos 18^{\circ}}\\ \ & = \frac{\frac{\sqrt{5}-1}{4}}{\frac{\sqrt{10+2\sqrt{5}}}{4}}\\ \ & = \frac{\sqrt{5}-1}{\sqrt{10+2\sqrt{5}}}\\ \therefore \tan 18^{\circ}& = \frac{\sqrt{5}-1}{\sqrt{10+2\sqrt{5}}}\\ \end{align} [/math][br][br][math] \begin{align} \cos 36^{\circ}& = 1-2\sin^2 18^{\circ}\\ \ & = 1-2\left(\frac{\sqrt{5}-1}{4} \right)^2\\ \ & = 1 - 2\times \frac{(\sqrt{5})^2-2\times \sqrt{5}\times 1 +1^2 }{16}\\ \ & = 1 - \frac{5-2\sqrt{5}+1}{8} \\ \ & = \frac{8-5+2\sqrt{5}-1}{8} \\ \ & = \frac{2+2\sqrt{5}}{8} \\ \ & = \frac{2(1+\sqrt{5})}{8} \\ \text{or, } \cos 36^{\circ} &= \frac{1+\sqrt{5}}{4}\\ \therefore \cos 36^{\circ}& = \frac{\sqrt{5}+1}{4}\\ \end{align} [/math][br]Also,[br][math] \begin{align} \text{We know,}\\ \sin 36^{\circ}& = \sqrt{1-\cos^2 36^{\circ}}\\ \ & = \sqrt{1-\left( \frac{\sqrt{5}+1}{4} \right)^2}\\ \ & = \sqrt{1-\frac{(\sqrt{5})^2 +2\times \sqrt{5}\times 1+1^2 }{16}} \\ \ & = \sqrt{1-\frac{5 +2\times \sqrt{5}\times 1+1 }{16}} \\ \ & = \sqrt{1-\frac{6 + 2\sqrt{5} }{16}} \\ \ & = \sqrt{\frac{16-6 - 2\sqrt{5} }{16}} \\ \ & = \sqrt{\frac{10- 2\sqrt{5} }{16}} \\ \ & = \frac{\sqrt{10-2\sqrt{5}}}{4}\\ \therefore \sin 36^{\circ}\ & = \frac{\sqrt{10-2\sqrt{5}}}{4}\\ \end{align} [/math] [br]Also,[br][math] \begin{align} \tan 36^{\circ} & = \frac{\sin 36^{\circ} }{\cos 36^{\circ} }\\ \ & = \frac{ \frac{\sqrt{10-2\sqrt{5}}}{4}\\}{\frac{\sqrt{5}+1}{4}}\\ \ & =\frac{\sqrt{10-2\sqrt{5}}}{\sqrt{5}+1}\\ \therefore \tan 36^{\circ}& = \frac{\sqrt{10-2\sqrt{5}}}{\sqrt{5}+1}\\ \end{align} [/math][br]Also[br][math] \begin{align} \sin 54^{\circ} & = \sin(90^{\circ}-36^{\circ})\\ \ & =\cos 36^{\circ}\\ \ & = \frac{\sqrt{5}+1}{4}\\ \therefore \sin 54^{\circ}&=\frac{\sqrt{5}+1}{4}\\ \end{align} [/math] [br]Also,[br][math] \begin{align} \cos 54^{\circ} & = \cos(90^{\circ}-36^{\circ})\\ \ & =\sin 36^{\circ}\\ \ & = \frac{\sqrt{10-2\sqrt{5}}}{4}\\ \therefore \cos 54^{\circ}&=\frac{\sqrt{10-2\sqrt{5}}}{4}\\ \end{align} [/math] [br]Also,[br][math] \begin{align} \tan 54^{\circ} & = \frac{\sin 54^{\circ} } {\cos 54^{\circ} }\\ \ & =\frac{\frac{\sqrt{5}+1}{4} } { \frac{\sqrt{10-2\sqrt{5}}}{4}} \\ \ & =\frac{\sqrt{5}+1}{\sqrt{10-2\sqrt{5}}} \\ \therefore \ \tan54^{\circ} & =\frac{\sqrt{5}+1}{\sqrt{10-2\sqrt{5}}} \\ \end{align} [/math][br]

Statistics-Class-10-Opt. Maths (2+4+4=10 Marks)

Introduction
[size=150][color=#0000ff][b]Quartile Deviation (Q.D.)[/b][/color][/size][br][list][*]The difference between the upper quartile and the lower quartile is called [color=#0000ff][b]INTERQUARTILE RANGE.[/b][/color][/*][*]The semi-interquartile range of the data is known as[b][color=#0000ff] Quartile Deviation(Q.D.)[/color][/b][/*][*]Here ,inter-quartile range [math]=Q_3-Q_1[/math] [/*][*]Semi- interquartile range [math]=\frac{Q_3-Q_1}{2}[/math] [/*][*]Coefficient of quartile deviation[math]=\frac{Q_3-Q_1}{Q_3+Q_1}[/math] [/*][/list][color=#0000ff]For continuous or grouped data[/color][br][list][*][math]\text{Position of }Q_1=\left(\frac{N}{4}\right)^{th}\text{ item}[/math] [/*][*][math] Q_1 =L+\frac{\frac{N}{4}-c.f.}{f} \times h [/math] [/*][*][math]\text{Position of }Q_3=\left(\frac{3N}{4}\right)^{th}\text{ item}[/math][/*][*][math]Q_3=L+\frac{\frac{3N}{4}-c.f.}{f}\times h[/math][br]Where,[br][math] L= [/math] lower limit of quartile class[br][math]c.f.= [/math] c.f. of the preceding class [br][math] f= [/math] frequency of quartile class[br][math]h=[/math] class -height or, class - size or class interval[/*][/list]
User Guideline
Dear learner,[br][list][*] Click [color=#00ff00][b]Green coloured[/b] [/color]buttons for table.[/*][*]Click[color=#00ff00] [/color][color=#00ffff][b]Cyan[/b] [/color][color=#333333]coloured buttons for solution steps.[/color][br][/*][*]To change data, click on [size=150][b] check box [/b]named[b] [/b][/size] [color=#ff0000]Ambik[/color] .[/*][*]Again click [b]check box[/b] .[/*][*]Again click [color=#00ff00][b]Green coloured[/b] [/color]buttons for table.[/*][*]Again click [color=#00ffff][b]Cyan[/b][/color] coloured buttons for solution steps.[/*][*]We can use this applet to check our answer steps and to teach our students.[/*][/list]
Find quartile deviation and its coefficient from the following data.
[list=1][*][math] \begin{tabular}{|c|c|c|c|c|c|c|} \hline C.I.& 0-10&10-20&20-30&30-40&40-50&50-60\\[br]\hline[br]f&7&10&8&6&6&2\\ [br]\hline[br]\end{tabular}[/math][color=#ff0000][ Ans: 12.17, 0.49][/color][br][br][/*][*][math]\begin{tabular}{|c|c|c|c|c|c|} \hline \text{Size of shoes} & 5-8&8-11&11-14&14-17&17-20\\[br]\hline[br] \text{No. of shoes} &7&10&8&6&4 \\ [br]\hline[br]\end{tabular} [/math][color=#ff0000][Ans: 3.06, 0.21 ][/color][br][br][/*][*][math] \begin{tabular}{|c|c|c|c|c|c|c|} \hline \text{Size of shoes} & 0-20&20-40&40-60&60-80&80-100&100-120\\[br]\hline[br] \text{No. of shoes} &3&8&10&12&10&8 \\ [br]\hline[br]\end{tabular}[/math][color=#ff0000][ Ans: 23.5, 0.35][/color][br][br][/*][*][math] \begin{tabular}{|c|c|c|c|c|c|c|} \hline \text{Wages (Rs. in thousand )} &6-8&8-10&10-12&12-14\\[br]\hline[br] \text{No. of workers} &85&65&60&50\\ [br]\hline[br]\end{tabular} [/math][[color=#ff0000]Ans: 1.99, 0.21][/color][br][br][/*][*][math] \begin{tabular}{|c|c|c|c|c|c|c|} \hline \text{Class Interval} &5-10&10-15&15-20&20-25&25-30 \\[br]\hline[br] \text{Frequency} &4&12&16&6&2\\ [br]\hline[br]\end{tabular}[/math][color=#ff0000][ Ans: 3.44, 0.22 ][/color][br][br][br][/*][/list]
Introduction
Mean Deviation[br]The average of the absolute values of the deviation of each item from mean, median or mode is known as a mean deviation. It is also known as average deviation. It is denoted by M.D.[br]Calculation of Mean Deviation[br]For continuous series[br][list=1][*]M.D. from mean [math] = \frac{\Sigma f|x-\overline{x}|} {N} [/math][/*][*]M.D. from median [math] = \frac{\Sigma f|x-m_d|}{N} [/math][/*][*]Coefficient of M.D. from mean [math] = \frac{M.D. }{Mean} [/math] [/*][*]Coefficient of M.D. from median [math] = \frac{M.D.}{Median} [/math][br]Where,[br][math]\text{Mean}\left(\overline{x}\right)=\frac{\Sigma fx}{N}[/math][br][math]\text{Median}\left(m_d\right)=L+\frac{\frac{N}{2}-c.f.}{f}\times h[/math][br][math] x =\text{ mid-value of class interval } [/math][br][/*][/list]
Standard Deviation
[size=150][b][color=#1e84cc][size=200]S[/size]tandard deviation[/color][/b] [/size]is the positive square root of the arithmetic mean of the square of deviations of given data taken from mean. It is also known as[color=#ff0000] [b]"Root mean square deviation"[/b][/color]. It is denoted by Greek letter [math]\sigma[/math] (read as sigma). It is considered as the best measure of dispersion because:[br][list=1][*]It's value is based on all the observations.[/*][*]Deviation of each term is taken from the central value.[/*][*]All algebraic sign are also considered[/*][/list][b][size=150][color=#ff0000]Calculation of Standard Deviation[/color][/size][/b][br][color=#0000ff]Actual mean method:[br][/color]Standard deviation(σ)[math]=\sqrt{\frac{\Sigma f\left(x-\overline{x}\right)^2}{N}}[/math], where [math]x[/math] is the mid-value of each class-interval.[br][color=#0000ff]Direct method:[/color][br]Standard deviation(σ)[math]=\sqrt{\frac{\Sigma fx^2}{N}-\left(\frac{\Sigma fx}{N}\right)^2}[/math] ,[math]x[/math] is the where is the mid-value of each class-interval.[br][color=#0000ff]Assumed mean method:[/color][br]Standard deviation(σ) [math]=\sqrt{\frac{\Sigma fd^2}{N}-\left(\frac{\Sigma fd}{N}\right)^2}[/math],[br] where, [math]d=x-A[/math][i],[br] [math]A=\text{Assumed mean }[/math][br][/i] [math]x=\text{\text{mid- value of class - interval.[br]}}[/math][br][color=#0000ff]Step deviation method:[br][/color]When the class-interval is very large then step deviation method is used to find the standard.[br]Standard deviation(σ) [math]=\sqrt{\frac{\Sigma fd'^2}{N}-\left(\frac{\Sigma fd'}{N}\right)^2}\times h[/math][br]Where[br][math]d'=\frac{x-A}{h},\text{ }x=\text{mid- value of class -interval}[/math][br][math]A=\text{Assumed mean}[/math][br][math]h=\text{class - size}[/math][br][color=#ff0000][b][size=200][size=150]Coefficient of variation (C.V.)[/size][/size][/b][/color][br] The relative measure of standard deviation is known as the coefficient of standard deviation and is defined by[br]Coefficient of standard deviation [math] = \frac{ \text{Standard Deviation} } {\text{mean} }=\frac{\sigma}{\overline{x}} [/math][br]If the coefficient of standard deviation is multiplied by 100, then it is known as coefficient of variation. Coefficient of variation is denoted by C.V. and is calculated as:[br]   [math] C.V. = \frac{\sigma}{\overline{x} } \times 100\% [/math][br]Greater the coefficient of variation, greater will be the variation and less will be the consistency or uniformity. Less the C.V., greater will be the consistency or uniformity. For the consistency or uniformity of distribution, we use the C.V. So, C.V. is used to compare given distributions.[br][br][color=#ff0000][b][size=150]Variance:[/size][/b][/color][br] The square of standard deviation(σ) is called variation. It is given by [br]       [math]\text{Varaince} = (\sigma)^2 [/math]
[list=1][*]Find the [color=#0000ff][b]standard deviation [/b][/color]of the following data[color=#ff0000].[SEE 2075 R', SEE 2073 S'][/color][color=#0000ff][b] [Ans: 11.49][/b][/color][color=#ff0000][br][/color][math] \begin{tabular}{|c|c|c|c|c|c|c|} \hline[br]\text{Class Interval}& 0-10& 10-20& 20-30& 30-40& 40-50\\[br]\hline[br]\text{Frequency}&5&8&15&16&6\\[br]\hline[br]\end{tabular}[br][/math][br][br][/*][*]Find the [b][color=#1e84cc]standard deviation[/color][/b] of the following data[color=#ff0000].[ 2070 S ][/color][color=#1e84cc][b] [Ans: 6.05 ][br][/b][/color][math]\begin{tabular}{|c|c|c|c|c|c|c|} \hline[br]\text{Marks}& 0-4&4-8&8-12&12-16&16-20&20-24\\[br]\hline[br]\text{No. of students}&7&7&10&15&7&6 \\[br]\hline[br]\end{tabular} [/math][/*][*]Find the [color=#1e84cc][b]standard deviation[/b][/color] and [color=#1e84cc][b]its coefficient[/b][/color] of the given data[color=#ff0000].[ 2069 R'] [/color][color=#0000ff][b][ Ans: 11.66, 0.35 ][br][/b][/color][math] \begin{tabular}{|c|c|c|c|c|c|c|} \hline[br]\text{Class - Interval}& 0-10&10-20&20-30&30-40&40-50\\[br]\hline[br]\text{No. of students}&5&15&25&35&45 \\[br]\hline[br]\end{tabular} [/math][br][br][/*][*]Calculate the [b][color=#1e84cc]coefficient of variation[/color][/b] from the data given below.[color=#ff0000][ 2075 R ] [/color][color=#1e84cc][b][ Ans: 44.1% ][br][/b][/color][math]\begin{tabular}{|c|c|c|c|c|c|c|} \hline[br]\text{Class - Interval}& 0-20&20-40&40-60&60-80&80-100\\[br]\hline[br]\text{No. of students}&2&3&4&5&6 \\[br]\hline[br]\end{tabular} [/math][br][br][/*][*]Find the[color=#1e84cc][b] standard deviation[/b][/color] and [b][color=#1e84cc]coefficient of variation[/color][/b] from the given data. [color=#ff0000][ SEE MODEL 2076 ] [/color][color=#0000ff][b][Ans: 6.05 & 50.42 % ][/b][/color][br][math] \begin{tabular}{|c|c|c|c|c|c|c|} \hline [br]\text {Age} & 0-4&4-8&8-12&12-16&16-20&20-24 \\ \hline[br]\text{ No. of students} & 7&7&10&15&7&6 \\ \hline[br]\end{tabular} [/math][/*][/list]

Information