Image d'une figure géométrique par une translation
Consignes
Construire un polygone de ton choix [icon]/images/ggb/toolbar/mode_polygon.png[/icon][br]Construire un vecteur[icon]/images/ggb/toolbar/mode_vector.png[/icon][br]Clique sur [icon]/images/ggb/toolbar/mode_vectorfrompoint.png[/icon]. [br]Clique sur le polygone [icon]/images/ggb/toolbar/mode_polygon.png[/icon]que tu as tracé et sur le vecteur[icon]/images/ggb/toolbar/mode_vector.png[/icon][br]Tu viens d'obtenir l'image de ton polygone de départ par la translation. Les 2 polygones ainsi tracés sont isométriques.[br]Clique sur l'outil[icon]/images/ggb/toolbar/mode_join.png[/icon] et trace chaque droite qui passe par le sommet de ton polygone de départ et par son sommet image.[br]Trace tes droites en pointillés.[br]Clique sur [icon]/images/ggb/toolbar/mode_distance.png[/icon] pour afficher la longueur du segment formé par le sommet et son image et pour afficher les mesures des segments des 2 polygones.[br]Avec l'outil Afficher/Cacher l'étiquette[icon]/images/ggb/toolbar/mode_showhidelabel.png[/icon] masque les étiquettes[br]Cet outil [icon]https://www.geogebra.org/images/ggb/toolbar/mode_move.png[/icon] te permet de déplacer ta figure.[br]Utilise l'outil[icon]/images/ggb/toolbar/mode_angle.png[/icon] pour mesurer les angles.[br]
Question 1
Décris ce que tu observes lorsque tu modifies la longueur et l'orientation du vecteur de la translation?
Question 2
Décris ce que tu observes au niveau des dimensions de la figure image, lorsque tu modifies les dimensions de ta figure initiale?
Question 3
Décris ce que tu observes au niveau des droites en pointillées lorsque tu modifies les dimensions de ton vecteur et celles de ton polygone initial.
Question 4
Calcule les mesures des angles intérieurs des 2 figures. Que remarques-tu?
Question5
Suite à tes observations, que peux-tu conclure?
Image d'une figure plane par une réflexion ( symétrie axiale)
Consignes
Construis un polygone avec l'outil[icon]/images/ggb/toolbar/mode_polygon.png[/icon][br]Construis une droite avec l'outil[icon]/images/ggb/toolbar/mode_join.png[/icon][br]Utilise l'outil [icon]/images/ggb/toolbar/mode_move.png[/icon] pour effectuer les déplacements.[br]Utilise l'outil[icon]/images/ggb/toolbar/mode_mirroratline.png[/icon] pour tracer l'image de ton polygone par la symétrie axiale.[br]Utilise l'outil intersection[icon]/images/ggb/toolbar/mode_intersect.png[/icon][br]Utilise l'outil [icon]/images/ggb/toolbar/mode_distance.png[/icon]pour vérifier les mesures des segments.[br]Utilise l'outil [icon]/images/ggb/toolbar/mode_angle.png[/icon]pour vérifier les mesures des angles.[br]
Question 1
Fais bouger ton axe de symétrie. Que remarques-tu?
Question 2
Fais bouger ton image initiale. Que remarques-tu
Question 3
Modifie les dimensions de ton polygone initiale. Que remarques tu?
Question 4
Lorsque tu modifies les dimensions de ton image et quand tu fais bouger ton axe de symétrie, que remarques-tu au niveau des droites en pointillées?
Question 5
Calcule les mesures des angles intérieurs des 2 figures. Que remarques-tu?
La rotation
Consignes
Trace un triangle avec l'outil[icon]/images/ggb/toolbar/mode_polygon.png[/icon][br]Trace un point O avec l'outil[icon]/images/ggb/toolbar/mode_point.png[/icon] [br]Trace l'image de ton triangle par une rotation de centre O et d'angle 50 en utilisant l'outil[icon]/images/ggb/toolbar/mode_rotatebyangle.png[/icon]. On choisira le sens horaire.[br]Trace 3 cercles en pointillés et qui passent par les sommets A et A', B et B', puis C et C'. Utilise l'outil cercle centre- point[icon]/images/ggb/toolbar/mode_circle2.png[/icon][br]Trace les segments CO et CO' avec l'outil [icon]/images/ggb/toolbar/mode_segment.png[/icon][br]Affiche la mesure de l'angle COC' avec l'outil [icon]/images/ggb/toolbar/mode_angle.png[/icon][br]Affiche les mesures des 3 côtés de la figure initiale et aussi ceux de la figure image. Utilise l'outil [icon]/images/ggb/toolbar/mode_distance.png[/icon].[br]Utilise l'outil[icon]/images/ggb/toolbar/mode_move.png[/icon] pour déplacer tes figures géométriques.[br][br]
Question 1
En déplaçant la figure initiale, qu'est-ce que tu observes au niveau de la figure image?
Question 2
Déplace ton centre de rotation et décris ce que tu observes au niveau de la figure image.
Question 3
Modifie la forme de ta figure initiale et décris ce que tu observes au niveau de la figure image
Question 4
Que peux-tu dire des angles intérieurs de la figure initiale et de la figure image?
Copie de Oeuvre d'art avec GeoGebra
Maintenant que tu sais construire des transformations géométriques avec GeoGebra, tu auras à construire une oeuvre d'art composée de translations, de réflexions et de rotations. Dans les deux documents suivants, tu trouveras des idées pour t'inspirer ainsi que les étapes de réalisation de ta création.
Voici des exemples d'oeuvres d'art avec GeoGebra et les transformations géométriques:
[size=150][b]Choisis le format de ton carré de départ, 5x5, 6x6 ou 7x7 et travaille dans la fenêtre correspondante. Les 2 autres formats seront facultatifs. [/b][/size]
Carré 5x5
Carré 6x6
Carré 7x7
QUESTION 1
Indique les polygones blancs obtenus dans ta construction.
QUESTION 2
Décris de façon détaillée les étapes de réalisation de ton oeuvre d'art en mentionnant les couleurs des figures et les transformations effectuées sur celles-ci dans l'ordre.